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Abstract—In recent years, communication technologies are
growing significantly and Cognitive Radio (CR) networks is an
expert system to adjust the radio spectrum. However, wireless
communication diverse scenarios and distinguishing spectrum
occupancy poses a significant challenge in Spectrum Sensing
(SS). As it requires high-performance and flexible solutions to
accommodate varied characteristics and ensure seamless
connectivity. Hence, a Machine Learning (ML) based algorithm
namely Support Vector Machine along with Elastic Net
Regularization and Radial Basis Function (SVM-ENR-RBF) is
proposed to detect and classify spectrum signals. Initially, the
spectrum signals are collected from RadioML2016.10b dataset
which are preprocessed by Min-Max scaler to normalize In-
phase (I) and Quadrature Components (QC) of modulated
signals. Finally, SVM classifier provides a regularization
technique namely ENR and a kernel function RBF to make
easier to analyze as well as classify the spectrum occupancy. The
combination of SVM-ENR-RBF improves the detection
accuracy, robustness and generalization capabilities. From the
results, SVM-ENR-RBF method offers high results of
probability of detection, prediction accuracy, and computation
time results as 99.8%, 99.2%, and 1.6sec respectively when
compared with existing Reinforced Learning-Extreme Learning
Machine.

Keywords—cognitive  radio  networks,  elastic  net
regularization, machine learning, radial basis function, spectrum
sensing, support vector machine.

I. INTRODUCTION

In general, Cognitive Radio Networks (CRNs) utilize ML
algorithms to detect Idle Frequency Bands (IFB) and optimize
SS. It helps in enabling dynamic spectrum access and mainly
divided into two types of users namely Primary Users (Pus) as
well as Secondary Users (SUs). The Cognitive Radio (CR)
operates under an overlay scheme, where users perform a
listen-before-talk (LBT) procedure to sense the channel for
interference-free usage before transmission, only transmitting
when the channel is detected as idle [1]. However, they do not
have limited spectrum usage rights. Here, SUs are also known
as unauthorized users and utilize the spectrum together with
PUs [2]. The rising of wireless communication containing
developments in infrastructure, and emerging technologies
crucially effects SS in CRNs. Here, SS is the process of
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detecting spectrum holes or IFB, enabling energetic spectrum
access, and improved wireless network capacity [3]. The
enabling effective reprocess refining wireless communication
and rapidly increasing spectrum scarcity. Also, wireless
device propagation and rising data rate demands increase
spectrum scarcity, requiring innovative spectrum controlling
results immediately [4].

The CR devices transmit their precisely estimated energy
levels to the fusion center, enabling informed decision-making
through data fusion and optimized spectrum sensing. The CR
encounters a significant obstacle in the form of the Hidden
Terminal Problem (HTP), which is exacerbated by shadowing
and fading effects. These phenomena lead to false alarms and
misdetection issues, resulting in interference to Pus. Here,
augmenting SS in CR is dynamic for revealing effective
spectrum utilization, and improve network capacity [5].
Similarly, a Dynamic Spectrum Access (DSA) systems
control innovative devices to utilize provisional spectrum
holes, easing scarcity and enhancing efficiency by reusing
underutilized FB [6]. Furthermore, a Covariance Matrix-
aware Convolutional Neural Networks (CM-CNN) influences
general CM training samples to optimize constraints, creating
a cultured SS mapping function and LSTM-ANN (Long
Short-Term Memory-Artificial Neural Network) records
multi-slot correlations, showing complex consecutive
dependencies and patterns in dynamic spectrum access [7].
Additionally, K-means clustering and SVM algorithms utilize
low-dimensional probability vectors as feature vectors,
allowing effective spectrum categorizing and grouping [8].

e The spectrum signals are taken from input data and
then preprocessed by using Min-Max scaler to
normalize the In-phase (I) and Quadrature
Components (QC) of modulated signals, where this
transformation conserves the signal’s distribution and
relationships.

e The normalized data is processed with Elastic Net
Regularization (ENR), as it robust feature selection,
reduces overfitting, and remove irrelevant features.

¢ Finally, RBF transforms the processed non-linear data
into a higher-dimensional space by creating it linearly
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discrete and enables non-linear separation of spectrum
states and achieved best results in detection
probability, prediction accuracy, and computation
time.

The construction of this paper is given as follows: section
2 describes about existing models along with their advantages
and limitations, section 3 summaries the proposed
methodology, section 4 demonstrates the experimental results,
section 5 delivers a discussion of the results, section 6
concludes the paper.

II. LITERATURE REVIEW

Diego Fernando Carrera et al [9] demonstrated a
Multilayer Extreme Learning Machine (M-ELM) to takeaway
Multiple-input Multiple-output (MIMO) organisms for
MilliMeter-wave (mmWave) organizations. The suggested
M-ELM method augmented hidden layer neuron count to
maximize system demonstration and minimize receiver
problem in CR method. The M-ELM method crucially
decreased processing time while conserving accuracy
corresponding to ELM receivers, improving real-time CRNs
performance. However, ideal performance required careful
configuration of hidden layer neurons, striking a balance
between model complexity and simplification.

Shanshan Wang et al [10] introduced an Online Sequential
ELM (OS-ELM) for active intervention behavior in cognitive
radar. The suggested OS-ELM method utilizes models namely
such as OS-ELM Angle Prediction (OS-ELM-AP), Frequency
Prediction (OS-ELM-FP) to calculate frequency and angle in
cognitive radar, by permitting capable and accurate active
interference calculation. The OS-ELM method demonstrated
superior prediction accuracy with lower computational
complexity, confirmed through simulations and measured
interference data analysis. However, the OS-ELM method's
efficiency was delayed by high computational complexities,
regulating its suitability for dynamic interference prediction
applications in real-time CRNS.

N. Sureka and K. Gunaseelan [11] developed Reinforced
Learning (RL) and ELM (RL-ELM) to detect emulation
attacks in dynamic CR-based wireless communication
networks. By integrating RL with ELM led to rapid learning
capabilities, RL-ELM effectively identifies and diminishes
emulation attacks. The suggested RL-ELM efficiently traced
and identified Primary User Emulation Attack (PUEA)
patterns with minimal processing time and optimal accuracy.
Here, RL-ELM algorithms, with reduced complexity,
enhanced detection rates and suitability for dynamic CR
environments by enabling real-time SS and efficient resource
allocation. However, its dependence on ML algorithms
controlled scalability and robustness along with introducing
exposure to data quality, noise, and adversarial attacks.

S. Sindhuja et al [12] established a Global Channel State
Information (GSCI)-Fuzzy ELM (GSCI-FELM) to diagnose
local spectrum dumps and assign optimal channel to the
Secondary User-Internet of Things (SU-IoT) devices
effectively. The suggested GSCI-FELM identified the
spectrum holes at SU-IoT, resolving PU identification by
changing it into Idle Channel State (IDC) recognition and
classification. The GSCI-FELM technique significantly
minimized energy consumption in CR-IoT networks,
achieved in reduction, and enhanced sustainability. However,
it has limited improvement in accuracy and potential for

further optimization in time-consuming and interference
signal identification existed.

M. Varun and C. Annadurai [13] presented the two tier
Learned Distributed Networking (LDN) framework for
sensing the spectrum of cellular networks. The suggested
LDN framework has two phases: first feature extractor phase
where distinguished feature vectors were collected and next
phase, Optimized ELM (O-ELM) used for evaluation. The
LDN framework exceeded innovative O-ELM by achieving
superior performance, it was enhanced accuracy, and reduced
computational complexity for effective healthcare spectrum
detecting in CRNs. However, the ELM's scalability was
slowed down by its dependence on a limited dataset and
simplistic features led to restricting its adaptability to complex
and real-world CR environments.

III. METHODOLOGY

The proposed SVM-ENR-RBF methodology is done in
four steps including first step, it begins with collecting
spectrum signals from the RadioML2016.10b dataset, a
complete repository of wireless communication signals. Then,
in second step, the collected data given for preprocessing,
where Min-Max scaling normalizes the In-phase (I) and
Quadrature Components (QC) of modulated signals by
enhancing data stability. Next, the normalized data is fed into
an SVM classifier, authorized by ENR and RBF kernel. Then,
this combination enables the SVM spectrum sensor to
distinguish between occupied and unoccupied spectrum
states, boasting excellent performance with high accuracy and
detection probability. By using ENR's balanced regularization
and RBF's non-linear separation capabilities, the proposed
method enhances SS, making it a game-changer for effective
spectrum consumption in CRNs. The block diagram in Fig. 1.
displays the outline of proposed system.

-
RadioM1.2016.10B { Spectrum Signals
dataset collection /

N
Classification SVM

Elastic Net
Regulation

Spectrum
unoccupied

Spectrum
occupied

Fig. 1. Block digram of proposed model

A. Dataset

This SVM-ENR-RBF method utilizes the publicly
available RadioML2016.10B dataset [14], generate by
O’Shea and Corgan. This dataset consists of 10 modulated
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signal types namely 8 digital namely BPSK, QPSK,8PSK,
QAMI16, QAM64, CPFSK, GFSK, and PAM4. Also, 2 analog
signals such as AM-SSB and AM-DSB modulations along
with Signal-to-Noise Ratio (SNR) values, where it has range
from -20 dB to +13 dB in 2 dB increments. This dataset is
divided into two samples namely positive and negative, where
positive samples includes 8 digital modulated signals and
negative samples includes additive noise following the zero-
mean  Circularly  Symmetric ~ Complex  Gaussian
(CSCG)distribution. The dataset has 2 X 1024 time samples
per signal, with I and QCs separated. The data is subdivided
into training (70%), validation (15%), and testing sets (15%)
to estimate the performance of the ML-based SS approach.

B. Preprocessing

For the proposed SVM-ENR-RBF method, preprocessing
step applies new filtering and constrained techniques to
improve the signals and SNR. It helps to remove transient
peaks, eliminating anomalies and normalizing the data for
effective analysis. Also, preprocessing ensures high-quality
input data by improving SS and categorization tasks in CRNs
[15]. For preprocessing the spectrum signals, Min-Max scaler
is used to normalize the I and QCs of modulated signals. This
scaler is taken from scikit learn library and the signals are
denoted as composite valued time-series data, with 1024
samples per signal. Then, the scaler subtracts the minimum
value and then divides the normalizing data by ranging 0 and
1 for each signal. This transformation conserves the signal’s
distribution and relationships by confirming the model learns
from relevant designs rather than scale differences [16]. Here,
preprocessed spectrum data is given as input into
classification process to determine occupied or unoccupied
status of spectrum with high accuracy.

C. SVM Classification

For classification process of proposed SVM-ENR-RBF
method, the SVM [17] takes normalized signals as input and
creates a linear hyperplane as a decision boundary by dividing
two classes while augmenting the border or distance between
the boundary lines. By exploiting this border, SVM improves
the classification and efficiency in differentiating between
classes by finding the best hyperplane which is able to reduce
the risk of misclassification and improves overall
classification accuracy. Here, SVM provides some
regularization techniques namely Lasso Regression (LR),
Ridge Regression (RR), ENR, and Dropout regularization
(DR) [18] to decrease the feature quantity, scale and dropout
features during the training period. Here, SVM classifier
utilizes ENR and RBF, where ENR balances L1 and L2
penalties for thinly distributed and robust feature selection.
While, the RBF kernel enables non-linear separation of
spectrum states. Also, a two-class SVM model is modified by
using the one-versus-rest method to overcome two-class

minimize Y%, (y; — w.x; —b)?> +c p 37, +

Where, y; is the actual output, coefficients w =
Wy, Wa, e ... w,, to minimize the residual data.

2) RBF kernel function: Then, RBF kernel is also named
as the Gaussian kernel or squared exponential kernel and it is
a common kernel function utilized in SVMs, Neural
Networks (NNs) and other ML algorithms. Here, RBF
transforms non-linear data into a higher-dimensional space

classification problems. The optimum classification boundary
is defined by the Equation (1) given below:

wx+b=0 (1

Where, w is defined as weight vector acquired during
training, x is an input vector, and b is the constant bias.
Support vectors are identified as data points that satisfy
Equation (2) below:

ywx +b) =1 2)

Where, ye{+1, —1} represents the class label, w is weight
vector, and b is bias. To classify the test observations, the
decision function Equation (3) is employed.

f(x) = sign(wx + b) 3)

Here, SVM kernel functions are used to convert input
features into a higher-dimensional space by enabling linear
categorization with a hyperplane, where patterns are non-
linearly separable. This process is called as kernel trick, where
it allows SVM classifiers to map non-linear relationships into
linearly separable spaces efficiently leads to accurate
classification. Also, SVMs provides three kernel functions
namely linear, polynomial, and RBF. Here, the main objective
is to increase the optimum hyperplane, as SVM ensures a
strong classification and refinement between spectrum
occupancy classes. However, the proposed SVM method
influences the strengths of ENR and the RBF kernel function
to classify spectrum occupancy.

1) Elastic Net Regularization: In this SVM-ENR-RBF
method, ENR combines the benefits of L1 (LR) and L2 (RR)
regularization techniques which are provided by SVM
classifier. By combining these two consequent terms into loss
function, ENR reduces overfitting, improve generalization
and selects relevant features efficiently. Here, L1 term
(A ]lw|[1) groups irrelevant weights to zero stimulating
sparse models and removing irrelevant features. Similarly,
the L2 term (A, ||w||1) decreases the size of large weights by
soothing the model and avoiding unnecessary weighting [20].
The loss function is given in Equation (4):

Lw,b) = 1/, Wl + C1Zlwjl + c2Xwj2  (4)

Where, L(w,b) is loss function, C1 and c2 are
regularization parameters and ||w||? = w.w control the two
regularization strengths. The objective function to minimize
for ENR is Equation (5):

XD 2| (5)

2

by creating it linearly discrete. It also maps input data to a
new feature space by using Equation (6):

K(E,y) = exp(=YIIE = ylI*) (6)

Where, E is vector of energy statistic, ¥ is the output
vector, and y is a constant.
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In this SVM-ENR-RBF method, RBF kernel acquires
complex relationships between SS features, by differentiating
occupied and idle spectrum efficiently. This method improves
robustness beside noise and intervention, improves reliability
in energetic environments. Also, it enhances detection
accuracy, classification effectiveness, improves spectrum
utilization in CRNs, and flexible SS for next-generation
wireless communication systems [21].

IV. EXPERIMENTAL RESULTS

This study aims to classify spectrum signals either
spectrum occupied or unoccupied with SVM-ENR-RBF

Total no of Primary Users (PU)

model which is implemented by a python package called
Scikit learn. The experimental setup utilized Windows 10,
intel core i5 CPU, 8 GB of memory and a 3.20 GHz processing
speed. For evaluating, the results various metrics are used,
such as prediction accuracy, probability of detection, and
computation time are considered and described as Equation
(7) to (9).

Where, TN and TP signifies true negative and positive,
FN,FP refers false negative and false positive.

TP+TN

Prediction accuracy = —————
TP+TN+FP+FN

()

Probability of detection =

Computation time = c1 * (n?* d + n3) )

A. Performance analysis

The proposed SVM-ENR-RBF model is analyzed on
RadioML.2016.10b dataset. The performance evaluation is
achieved by providing a regularization and a kernel function
namely ENR and RBF respectively. For performance analysis,
the proposed SVM model is compared with Random Forest-

Total no of User (PU+Noise signals)

(®)

SS (RF-SS), K-Nearest Neighbor (KNN), and Artificial
Neural Networks-SS (ANN-SS). The evaluation of SVM
classification model is explained below in Table 1.

Table 1 describes comparison of proposed method with
existing models, the results showcased that the SVM model’s
dominance in probability of detection 99.8%, prediction
accuracy 99.2%, and computation time 1.6 sec as shown in
Table 1.

TABLE L PERFORMANCE ANALYSIS FOR CLASSIFICATION MODELS
Performance of existing models Probability of detection(%) Prediction Accuracy(%) Computation time (sec)
RF-SS 98.3 98.7 8.3
KNN 97.8 98.4 5.0
ANN-SS 97.62 98.51 34
Proposed SVM model 99.8 99.2 1.6

Fuzzy ELM (GSCI-FELM) [12], and Learned Distributed
Networking (LDN) framework [13] with probability of
detection, prediction accuracy and computation time which
are given below in Table 2.

B. Comparative analysis

The suggested SVM-ENR-RBF model is associated with
Reinforced Learning (RL) and Extreme Learning Machine
(RL-ELM) [11], Global Channel State Information (GSCI)-

TABLE II. COMPARATIVE ANALYSIS OF PROPOSED MODEL
Comparative models Probability of detection(%) Prediction Accuracy(%) Computation time (sec)
RL-ELM [11] 98.9 N/A 10.0
GSCI-FELM [12] 92.5 98.2 72
LDN framework [13] 99.0 99.0 N/A
Proposed SVM 99.8 99.2 1.6

From Table 2, the proposed SVM-ENR-RBF model
offered high results of probability of detection, prediction
accuracy, and computation time results with 99.8%, 99.2%,
and 1.6 sec respectively by comparing with existing models
namely RL-ELM [11], GSCI-FELM [12], and LDN
framework [13]. The probability of detection of RL-ELM [11]
is 98.9% along with its computation time 0.6 sec. Similarly,
probability of detection, prediction accuracy, computation
time of GSCI-FELM [12] is 92.5%, 98.2%, and 7.2 sec
respectively. Moreover, at last compared with the LDN
framework [13], where its probability of prediction is 99.0%,
and prediction accuracy is 99.0%. Here, Table 2 showcasing
the proposed model's effectiveness in detection and prediction
tasks. It helps to improve detection accuracy, robustness to
noise and enhanced simplification abilities.

V. DISCUSSION

For efficient SS in CRN frameworks, an SVM-ENR-RBF
model is proposed by manipulating the interaction of ENR and
RBF kernel. The ENR balances L1 (LR) and L2 (RR)
penalties efficiently by ensuring the robust feature selection

though reducing overfitting. Moreover, the RBF kernel allows
non-linear separation of spectrum occupancy either occupied
or unoccupied by improving sensing accuracy. In augmenting
the deal between regularization techniques and kernel
parameters, the proposed SVM-ENR-RBF spectrum sensor
achieved higher performance, by reaching 99.8% of detection
probability, 99.2% of prediction accuracy, and a computation
time of just 1.6 seconds only. This outperforms existing
models, namely RL-ELM [11] (probability of detection is
98.9% along with its computation time 0.6 sec), GSCI-FELM
[12] (probability of detection, prediction accuracy,
computation time is 92.5%, 98.2%, and 7.2 sec respectively),
and LDN framework [13] (probability of prediction is 99.0%,
and prediction accuracy is 99.0%). It is showing that the
proposed SVM-ENR-RBF model’s excellent performance
and effectiveness in detection and calculation tasks by
improving detection accuracy, enhancing robustness to noise
and intervention. This SVM-ENR-RBF model improved the
generalization abilities diagonally in various situations, earlier
processing time and decreased computational complexity.
Also, it has a greater performance in low SNR atmospheres,
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and authenticating its prospective for real-world CR and
wireless communication applications.

VI. CONCLUSION

In this, an ML based SVM-ENR-RBF model is proposed
to accurately analyze and classify spectrum signals. This
process begins with the collection of spectrum signals from
the RadiML2016.10b dataset. Then, the spectrum signals are
preprocessed by using Min-Max scaler to normalize the I and
QCs of modulated signals. Next, the normalized data is given
as input to SVM classifier. Here, SVM classifier provide ENR
and RBF kernel, where ENR technique balances L1 and L2
penalties by ensuring robust feature selection and decreasing
overfitting. Although, RBF kernel permits non-linear
separation of spectrum either it is occupied or unoccupied
states by improving the detection accuracy. By integrating
SVM with ENR and RBF kernel, it has achieved an
outstanding performance in probability of detection,
prediction accuracy, and computation time with 99.8%,
99.2%, and a lightning-fast 1.6 seconds. This combination
leads to improve in detection accuracy, toughness to noise and
generalization abilities by creating it a perfect result for SS
applications. It is trained on preprocessed SS data and
achieved high accuracy in detection probability,
differentiating spectrum occupancy with enhanced robustness
to noise and interference, so augmenting spectrum utilization
in CRNs. In future, an ML based spectrum sensing model will
be developed to maximize the sensing capabilities of each CR
user and improve overall sensing efficiency of the entire
CRN:E.
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