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Abstract: Unmanned aerial vehicles (UAVs) coupled with machine learning approaches have at-
tracted considerable interest from academicians and industrialists. UAVs provide the advantage
of operating and monitoring actions performed in a remote area, making them useful in various
applications, particularly the area of smart farming. Even though the expense of controlling UAVs
is a key factor in smart farming, this motivates farmers to employ UAVs while farming. This paper
proposes a novel crop-monitoring system using a machine learning-based classification with UAVs.
This research aims to monitor a crop in a remote area with below-average cultivation and the climatic
conditions of the region. First, data are pre-processed via resizing, noise removal, and data cleaning
and are then segmented for image enhancement, edge normalization, and smoothing. The segmented
image was pre-trained using convolutional neural networks (CNN) to extract features. Through
this process, crop abnormalities were detected. When an abnormality in the input data is detected,
then these data are classified to predict the crop abnormality stage. Herein, the fast recurrent neural
network-based classification technique was used to classify abnormalities in crops. The experiment
was conducted by providing the present weather conditions as the input values; namely, the sensor
values of temperature, humidity, rain, and moisture. To obtain results, around 32 truth frames
were taken into account. Various parameters—namely, accuracy, precision, and specificity—were
employed to determine the accuracy of the proposed approach. Aerial images for monitoring climatic
conditions were considered for the input data. The data were collected and classified to detect crop
abnormalities based on climatic conditions and pre-historic data based on the cultivation of the field.
This monitoring system will differentiate between weeds and crops.

Keywords: image segmentation; CNN; UAV; crop-monitoring system; IoT; classification; machine
learning; fast recurrent neural networks
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1. Introduction

Farmers use herbicides to maintain and ensure the quantity and quality of producing
crops. Generally, herbicides are distributed completely over fields, even in weed-free areas,
as weeds may be distributed spatially in some areas [1]. Recently, expected yields have not
been obtained because of weeds. Moreover, economic and environmental risks occur and
have led various polities and countries (Europe, Australia, Brazil, and the USA) to create
legislation for the justifiable use of pesticides and provided guidelines to reduce the use
of chemicals [2]. According to these guidelines, spraying area-wise is permitted in site-
specific weed management (SSWM) based on weed coverage. One way to ensure SSWM
earlier is to use precise weed maps appropriately to monitor post-emergence weeds. So far,
monitoring weeds is performed either by detecting them remotely or via ground sampling.
In this study, remote sensing was used to significantly improve the reliability of SSWM
for suitable spatial and spectral resolutions in order to distinguish spectral reflectance [3].
However, some appearance features of multiple crops, as well as weeds, are identical in the
earliest stage of growth. To find a solution for this, a few works have mapped weeds at
later stages than the earliest growth stages. However, as spatial resolution is scarce, these
techniques have not been applied successfully for detection at earlier stages. But recently, a
novel aerial technique was integrated with existing techniques, namely, unmanned aerial
vehicles (UAVs) [4]. Machine learning and image analysis have been utilized for precision
cultivation with UAV imagery in a few recent projects, and this is a growing field (despite
its limitations). Based on this, a common way to design an organization scheme for weeds
that involves UAVs is to use rules that are manually defined based on differences in the
spectra, location, and indexes of vegetation. However, it is believed that remote sensing
provides advantages, to some extent, over other image analyzing and machine learning
approaches. Such methods have successfully employed on-the-ground images to motivate
further research works in this area, but a few limitations have been found regarding
proximal sensing, which make it difficult to use these techniques practically in real-time
applications [5]. Conversely, remote sensing has to be performed beforehand and helps
determine whether herbicides are needed, thus optimizing the target field. This was an
issue recently found in UAVs, but this is considered an acceptable cost. Several studies have
presented the benefits and feasibility of UAVs and, thus, have developed novel approaches
to monitoring the growth of weeds, testing them with various experimental setups. UAVs
focus on vertical applications with no consideration of issues in particular vertical domains
or across application domains. Moreover, practical ways to overcome these issues have not
been discussed.

In [6,7], the features and demands for UAV networks for civil applications were pre-
sented by considering their communication and networking aspects. Requirements like the
quality of service, parameters related to the network, data, and the minimal transmission of
data through the network for civil applications were examined. Moreover, the requirements
for general networking, namely, adaptability, connectivity, security, privacy, and scalability,
were also discussed. Finally, suitable communication technology was identified to support
reliable aerial networks. The research in [8] focused on routing and energy efficiency. First,
infrastructure and an ad hoc UAV network were designed concerning a particular area of
application, wherein a UAV acted as a server or client with a mesh or star UAV network,
identifying difficulties in deployment disruptions and delays. Then, routing issues, as
well as the energy efficiency of the UAV networks, were examined. In [9], flying ad hoc
networks (FANETs) connected to UAVs were examined. First, the functions of FANETs,
vehicle ad hoc networks (VANETs), and mobile ad hoc networks (MANETs) were studied.
Then, the challenges of using FANETs were discussed. In [10], an overview of UAV-aided
wireless communication was presented by deploying a basic network architecture. The
authors focused on key designs, and opportunities were discovered.

In [11], an introduction to the history and the development of public safety commu-
nication techniques, as well as the use of spectral allotment for public safety use, with all
sorts of frequencies was discussed. It was concluded that UAV applications supporting
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public safety communications were covered by privacy factors and there was a lack of com-
prehensive rules and regulations, policies, and management of UAVs. In [12], cooperative
swarm UAVs applications, which acted as a distributed processing system, were described.
Distributed processing applications were further classified as general-purpose applications,
object-detecting applications, tracking applications, surveillance applications, applications
collecting data, applications for path planning, navigating applications, applications for col-
lision avoidance, coordinating applications, and applications that monitor the environment.
But an issue faced by these applications was not taken into consideration. A comprehensive
survey was provided in [13] on UAVs, focusing on their usage in the delivery of the Internet
of Things (IoT). The architecture for UAVs with related key challenges and needs was
discussed. Figure 1 below shows the sample images of sample crops and few common
weeds identified the field.
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Even though UAV imaging is of great use, its technologies have numerous practical
challenges. At first, high spatial resolution images generally produce noise effects because
of their boosted intentions, which are detectable, while traditional pixel-based methods
were involved in the classifying process [14]. Generally, to reduce these noise effects,
one should either focus on routing or energy efficiency. Initially, infrastructure and ad
hoc UAV networks were distinguished concerning the area of application where UAV
acted as a server or client, with mesh or star UAV networks, to identify the hardened
deployment of disruptions and delays. Then, routing issues, as well as the energy efficiency
of the UAV networks, was focused on in [15]; this was then integrated with information
from the spectrum for further classification process. Using this texture information, the
impacts of the pixels that were isolated were reduced. The object-oriented approach was
used to extract useful objects using a multi-resolution segmentation [16] and classification
approach [17] where better classification accuracy was obtained compared to the pixel-
based approach for spectrum information. The computational load was heavy while
pre-processing and processing data. The high spatial resolution images of UAVs produced
complex pre-processing and required a longer classification time [18]. Constructing a time-
series UAV image setup for classifying crops is not always easy. Atmospheric conditions do
not have more impact while capturing UAV images than satellite images but are difficult in
some conditions [19], like the rainy season. To capture time-series UAV images to classify
crops, operators visit the interested area several times. Practically, optimal images have
to be acquired several times to obtain high classification accuracy. Classifying crops with
UAV images is performed with a single UAV image [20], but for accurate comparison, a
time-series image set is required. Along with the issues of data acquisition, selecting an
appropriate classification approach is also essential so that reliable crop classification results



Sustainability 2023, 15, 11242 4 of 20

can be obtained. Initially, an infrastructure and ad hoc UAV network were distinguished
to the area of application where UAV acted as a server or client, with mesh or star UAV
networks and identifies the hardened deployment of disruptions and delays.

Then, routing issues, as well as the energy efficiency of the UAV networks, were
focused on in [21,22]. In recent years, the Internet of Things (IoT) has integrated itself into
the major application technologies [23,24]. Deciphering actual optimization, clustering,
forecasting, classification, and other engineering challenges has proven to be successful,
reliable, and efficient when using metaheuristic algorithms [25,26]. The safety of driving has
been improved by the autonomous vehicle guided by machine learning algorithms [27,28].

This proposed work differs from other works by the use of machine learning ap-
proaches which are being combined and used as a result in a robust, suitable scheme to
differentiate weeding either within or outside the crops [29]. The major contributions of
this article are deliberated as follows.

â To monitor the crop in a remote area where the cultivation is below average, thereby
analyzing the climatic conditions of the region.

â To segment the pre-trained image using CNN for extraction of the feature, thereby
detecting the crop abnormality.

â A fast recurrent neural network-based classification technique has been used to classify
the abnormality of crops.

This work is presented as described here: Section 2 elaborates on the design and
classification of the proposed scheme; Section 3 discusses the experimental setup and
presents an analysis of the results. To conclude, a summary of this work along with future
enhancements is provided in Section 4.

2. Methodology

The recent advancements in technology using UAV and Deep Learning approaches
have made several impossible things possible. UAV with IoT system help to collect the
aerial data with the help of sensors. Geostationary satellites are used to obtain the data and
are designed to provide more localized communication services. They typically have an
altitude of 35,800 km and include both broadcast and telecommunications satellites in the
C-band, Ku-band, and Ka-band frequencies. The useful data can further be used by feeding
them to a trained deep learning approach like Artificial Neural Network for prediction. The
results are highly helpful for determining an appropriate crop to sow in a particular field.
This section presents the UAV design, IoT design, pre-processing phase, feature extraction,
and classification of the weed from the original crop, which is considered abnormal data in
this study. The proposed Architecture is given in Figure 1.

CNN methods are used for the detection of weeds from crops, mostly because they
are the best for image recognition and classification tasks [30]. Unlike other techniques,
CNNs are able to identify complex patterns and shapes in data, without having to use
“expert knowledge” or manually crafted features. Additionally, CNNs are able to exploit
the spatial correlations present in data more effectively, which is especially useful for tasks
such as weed detection, as it requires understanding spatial relationships between pixels.
Finally, CNNs are fast, powerful and can be used with large datasets, which is important
for accurate and precise weed detection. The proposed system is shown in Figure 2.

Initially, the satellite data are pre-processed via resizing, noise removal, and data
cleaning, which is then segmented for image enhancement, edge normalization, and
smoothening. The segmented image has been pre-trained using CNN for extraction of the
feature. Through this process, crop abnormality has been detected. When the abnormality
of input data is detected then the data have been classified to predict the stage of crop
abnormality. Here, the fast recurrent neural network-based classification has been used. pH
and soil nutrient levels are two essential pieces of information provided by electrochemical
sensors for precision farming. Specific ions in the soil are found using sensor electrodes
to gather data. High-resolution crop data are gathered by drones like the DJI Inspire 2 to
spot any problems with the crops and alert growers so they may take prompt action before
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damage occurs. At the moment, sensors mounted on specifically constructed “sleds” assist
in gathering, processing, and mapping soil chemical data. The following section will briefly
discuss the extraction of features and data classification.
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2.1. CNN-Based Feature Extraction

CNN is used to generate features automatically and combine these with the classifier.
Out of all classifiers, the recording of stages that transform appropriate volume into output
volume is straightforward in this approach, which is one of the benefits of the CNN
classifier [16–24]. There are a few distinct layers, and each layer transforms the input into
the output using a special function [24–29]. This classifier’s disadvantage is that it does not
factor in the article’s position and orientation while making predictions. Compared to, say,
max pool, both backward and forwards, convolution is a significant leisure operation. Each
training step is meant to become significantly longer if indeed the network is large [30–35].

Initially, a Convolutional neural network is employed when the input images are
sent to several layers, like convolution, pooling, flattening, and fully connected layers,
and a product of CNN is created that categorizes video frame images [34–40]. After it is
established, CNN builds its models from scratch and then uses picture augmentation to
improve them. To categorize pictures and assess accuracy for training and testing data, a
few of the pre-trained CNNs are employed.

Pool: The pooling layer is referred to as this. In CNN, only maximum pooling is
employed, and the pooled kernel size is typically 2 by 2 along a stride of 2.

Fully Connected (FC) layer: The size configuration of this layer’s convolution in CNN
is n1 n2, where n1 and n2 are the incoming and outgoing tensors’ respective sizes. N2 is
often an integer, whereas N1 is indeed a triplet (7 7 512).

Dropout: The “Drop” layer is used to improve the deep learning technique. In both
dropout layers, it puts a small portion of the amount that has been connected to a certain
node % networking to 0 and MVGG 16 is set to 0.5.

It is believed that remote sensing provides advantages to some extent over other
image-analyzing and machine learning approaches [41–45]. Such methods employ on-
ground images successfully to motivate further research works in this area. But few
limitations are found with proximal sensing, which makes it difficult to use practically in
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real-time applications, and increases its nonlinearity [46–49]. Both of the pooling layers’
convolution layers have the same link code, block size, and stride. In reality, combining two
3 × 3 convolution layers yields one 5 × 5 layer and three 3 × 3 convolution kernels yield
one 7 × 7 layer, respectively. A single large convolution kernel performs substantially more
slowly than stacking two or three smaller ones. Additionally, the number of parameters has
been reduced. Really helpful ReLU layers are those that are added between convolution
layers that are too thin.

The object-oriented approach was used to extract useful objects using the multi-
resolution segmentation [16] and classification approach [17], where better classification ac-
curacy was obtained compared to the pixel-based approach for spectrum information [18–23].
The computational load was heavy while pre-processing and processing data. The high
spatial resolution images of UAV produced complex pre-processing and took more time
for classifications; thus, it is believed that remote sensing provides advantages to some
extent over the other image analyzing and machine learning approaches [23–28]. Designing
a model that maps StoM with the aid of certain learning data is the main goal. Learn-
ing the distribution across labels model, which is denoted as follows, models this as a
probabilistic technique.

P(n(M, i, wm)|n(S, i, ws)) (1)

where in n (I, i,w) is a rework for an image I that is centered on pixel I and has a size of
w * w. In this case, a greater value of w s is better, since it allows for the extraction of more
contextual data.

fi(s) = σ(ai(s)) = P(mi = 1|s) (2)

where as I and fi respectively represent the total intake once more for the ith output and
also the significance of the ith collecting information. The expression for a technical value,
(x), is

σ(x) =
1

1 + exp(−x)
(3)

CNN is used in conjunction with both of the pooling layers’ convolution layers, which
have the same link code, block size, and stride. It is given as:

fil(s) =
exp(ail(S)

Z
= P(mi = l|s) (4)

where fil(s) is the prediction probability in which the pixels mapped to label j.
The structure of CNN is given in Figure 3 below.
The benefits of the suggested technique are enumerated as follows:

• First, CNN could be able to process enormous amounts of labeled data from different
domains.

• Second, it runs quicker when parallelized with graphics processing units (GPU). As a
result, this is also expanded to include additional pixels.

• Training data are simulated by reducing kernel size through the computational learn-
ing procedure of the suggested technique. Optimization becomes challenging, since
there are so many training patches. A binary classifier with minimal changes can
be used for this. A few of the hyperparameters have been slightly changed. The
hyperparameters have been analyzed using sensitivity so that they may be tweaked
more precisely.

2.2. Fast Recurrent Neural Networks (FRNN) Based Classification

The recurrent architecture along with its unfolded graph of computation for the
proposed FRNN is illustrated in Figure 4 for the training and testing phases. As shown in
Figure 4a, for each step t, x(t) is provided as follows, and thus x(t) R D, in which D is the
component of the functionality input, initiation of the hidden layer is represented by H(t)
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(k), in which H(t) (k) R ek, signifies the hidden layers number for the layer k, in which 1 k
l), and O(t), symbolizes the un-normalized (t).
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The m—dimensional U [e1D] is used to parameterize connections between both the
hidden and output layer, the graded matrix V(k) [ek + 1ek] is used to characterize intercon-
nection between both the hidden and hidden forwards layers, and the weighted matrix
V(k) [Sek] is used to characterize interconnection between both the hidden and output
layers. It is interesting that, depending on the distribution of varying input data, ek (1 k l)
might change; this refers to k with both the data streams while training. Additionally, in the
P-FRNN structure illustrated in Figure 4, recurring connections here between hidden layers
are explicitly maintained via hyperplane activity and are indicated as dot-filled arrows.

Additionally, P-FRNN does not maintain an external set of weights for the efficient
system between the hidden layer and the output.

As a result, especially for deep networks, the set of indicators in the system is dras-
tically decreased. Further, exploiting the relationship between hidden and outputs is
advantageous for the system in terms of learning from exact inputs with older date stamps,
and even facilitates greater parallelization when training.
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In this section, (k) ∈ bias at level k is R, ek with respect to the (k − 1)th feature
plane in which dimension is added. In general, it is noteworthy that the outcome of the
previous age stamp implicitly impacts each learning algorithm—with this stimulation
being hyperplane dependent—without implicating either parameter or external strength
training. Particularly, during testing, the anticipated output, denoted by yb(t1), substitutes
for the output, denoted by y(t1), which was acquired as a real forward-propagation estimate
Hyperplane in P-FRNN that is implemented by activating the concealed layer. This is used
to produce this:

H(k) = e

−η
di(t)
(k)

max(di(t)
(k) )


(5)

where I ranges from 1. Both of the pooling layers’ convolution layers have the same link
code, block size, and stride. At the kth hidden layer, di(t) (k) is (t − 1)th data and ith feature
in the hyperplane distance as:

di(t)
(1) =

∣∣∣y(t−1)
∣∣∣
1
S(bi

(1) + Uix(t))√
1 + ∑D

j=1 U2
ij

(6)
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where k is 1, the 1-norm of y is |y|1, the dimension of output is S, and R e1 equals the bias
at level 1 that belongs to b(1), with respect to the additional aspect of the feature plane.
Likewise, for 1 < k ≤ l,

di(t)
(1) =

∣∣∣y(t−1)
∣∣∣
1
S.(bi

(k) + V(k−1)i)H(t)
(k−1)√

1 + ∑
ek−1
j=1 V2

(k−1)ij

(7)

The output that is non-normalized at example t is calculated after obtaining the hidden
layer installations, as shown in Figure 4b using:

O(t) = c + V(K)H(t)
(k) (8)

Therefore, c is the hidden and output bias, denoted by R S, whereas k is equal to l.
In order to obtain the expected output yb(t), the non-normalized logarithmic probability
is generated and is again normalized using the softmax activation function, and this is
provided by:

ŷ(t) = so f tmax(O(t)) (9)

L(y, ŷ) = −∑
i

yi.log(ŷ) (10)

L stands for loss which is produced in various ways, and measured outputs at the
given time are represented by the y band y.

2.3. Gradient Computing with Back-Propagation

The Back-Propagation SGD technique for the graph that is unwrapped for compu-
tation is all that is required in P-FRNN to compute gradients. Additionally, the repeated
relationship between the hidden layer and the output is unclear. The traditional back-
propagation through-time technique used on RNN for the efficient system between hidden
units exhibits problems about exploding/vanishing trend lines, but this approach uses
back-propagation to isolate each time stamp, which significantly reduces the calculation
time or even defeats those issues. As a result, the following P-FRNN gradient calculation
for each timestamp is presented: recursive calculation initially starts with L/L(t) = 1 and is
expanded for both the output units and for hidden units, which are as follows:

∂L

∂O(t)
i

=
(
∇O(t) L

)
i =

(
ŷ(t) − y(t)i

)
(11)

∇
H(t)
(k)

L = VT
(k)

(
∇O(t) L

)
(12)

∇
H(t)
(k)

L =

∂H(t)
(k+1)

∂H(t)
(k)

(∇
H(t)
(k+1)

L
)
= VT

(k)

( η

M
.H(t)

(k+1)

)
.
(
∇

H(t)
(k+1)

L
)

. (13)

where ‘◦’ indicates the product element-wise and M is the maximum distance beginning
on the sample towards the feature plane (k + 1). Both of the pooling layers’ convolution
layers have the same link code, block size, and stride. In reality, combining two 3 × 3
convolution layers yields one 5 × 5 layer and three 3 × 3 convolution kernels yield one
7 × 7 layer, respectively. A single large convolution kernel performs substantially more
slowly than stacking two or three smaller ones. Additionally, the number of parameters has
been reduced. Really helpful ReLU layers are those that are added between convolution
layers that are too thin.
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For bias parameters, the gradient computation is:

∇cL =

(
∂O(t)

∂c

)T(
∇O(t) L

)
=
(
∇O(t) L

)
(14)

∇b(k) L = (
∂H(i)

(k+1)

∂H(i)
(k)

)T
(
∇

H(t)
(k)

L
)
=
( η

M
.H(i)

(k+1)

)
·
(
∇

H(t)
(k)

L
)

(15)

where in 1 ≤ k ≤ l. M is indeed the ideal separation between the features on showcase
plane k and the samples on a particular occurrence.

The gradients calculation for the weighting component is:

∇(k)L = ∑
i

(
∂L

∂O(t)
i

)
∇VO(t)

i =
(
∇O(i) L

)
(16)

If k is assigned as l, then

∇v(k)L = ∑
i

 ∂L

∂Hi(t)
(k+1)

(∇v(i)
(k)Hi(t)

(k+1)) = (
η

M
.H(t)

(k+1))·(∇H(t)
(k+1)

L)(H(t)
(k))

T (17)

if 1 ≤ k < l.
At this point, ∇V(t) represents the weight donation to the gradient at instance t.

2.4. Hidden Layer Online Adaptation

The formalization of the P-self-evolution FRNN’s plan, which would be predicated
upon that network significance (NS) model, is presented in this section. Essentially, NS is
the theoretically expressed derived form of the mean square error (MSE) for prediction,
which is expressed as follows:

NS = Var(O) + Bias(O)2 (18)

by directly examining the potential for overfitting or underfitting conditions, where
(k) ∈ bias at level k is R ek with respect to the (k − 1)th feature plane in which dimension
is added. In general, it is noteworthy that the outcome of the previous age stamp im-
plicitly impacts each learning algorithm with this hyperplane-based stimulation, without
implicating either parameter or the external strength training. In addition, by default,
they view learning using the instructor forcing strategy whilst also training. In particular,
during testing, the anticipated output, denoted by yb(t1), substitutes the output, denoted
by y(t1), which was acquired as real. Additionally, NS can determine the model’s accuracy
throughout the whole data domain for given data distribution. Large NS values indicate
either a large dimensionality or a high bias issue. The former shows that the model is
underfitting, whereas the former shows that the model is overfitting. The bias-variance in
P-FRNN is calculated as follows:

NS =
(

E
[
O2
]
− E[O]2 + E[O]− y2

)
(19)

In the above equation, E[O] indicates the output of non-normalized expectation. In
some instances, t, the E[O] for P-FRNN is recurrently computed as shown below.

E[O] =
∫ ∞

−∞
(c + V·H)p(H)dH = c + V.E[H] (20)

where

E[H] =
∫ ∞

−∞
e(−

d
max(d) )p(d)dd

= e(−
E(d)

max(E(d)) ) (21)
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Now,

E[d] =
(

E
[
d1
]
, E
[
d2
]
, E
[
d3
]
, . . . . . . .E

[
dek
]1
)

(22)

where

E
[
di
]

k=1
=
∫ ∞

−∞

|y|1−
(

bi
(1) + Ui.x

)
√

1 + ∑D
j=1 Uij

p(x)dx (23)

Most of the existing works consider the data normally distributed, and thus p(x) is
assumed to be as follows:

N(x|µ) = 1

(2π)D/2
1

|∑ x|1/2

{
−1/2(x− µ)T∑ x−1

(x− µ)
}

(24)

x stands for the vector with dimension D. However, the data streams do not adhere
to a particular density strategy and instead represent a combination of distributions. By
presuming this rigid normality assumption, p(x) is defined utilizing the Gaussian mixture
modeling asp(x) = (i = 1) to release this innovative P-FRNN. ˆK[N(x|µi,∑x i)] K stands for
the available components, and I is the mixing coefficient where 0 I 1 and _(i = 1) k I = 1. In
this case, the class number, K = S, is taken into consideration. After determining the values
of the I variance, and mean parameters, the expectation maximization (EM) technique was
used to modify each sample individually. So, it is stated as

E
∣∣∣di
∣∣∣
k=1

=
1
S

S

∑
m=1

|y|1 −
(
bi + Ui·µm

)√
1 + ∑D

j=1 Uij

(25)

where µ ≡ [µ1, µ2, · · ·, µS], and µ > m(m = 1,···S) ∈ R D. Conversely, when the level of the
hidden layer k > 1:

E
∣∣di
∣∣
k>1 =

∫ ∞
−∞

|y|1−
(

bi
(k)+V(k−1)i .H(k−1)

)
√

1+∑D
j=1 V(k−1)ij

p(H)dH

=
|y|1−

(
bi
(k)+V(k−1)i .E[H(k−1)]

)
√

1+∑D
j=1 V(k−1)ij

=

|y|1−

bi
(k)+V(k−1)i .e

− E(dk−1)
max(k(d))


√

1+∑D
j=1 V(k−1)ij

(26)

Following the computation of NS, it is engaged in altering the structural configuration
of the hidden layer in the P-FRNN, as follows: The strategy of growing hidden units: This
strategy failed to address the growing issue of prejudice. By increasing the complexity of
the structural network or by including multiple hidden units in the hidden layer, the higher
bias value denoting an equivalent circumstance is resolved. When the following condition
is met, these units are added:

µt
Bias + σt

Bias ≥ µmin
Bias + πσmin

Bias (27)

where σt
Bias, µ

t
Bias are the SD and mean where b(k) ∈ bias at level k is R ek in respect to the

(k − 1)th feature plane in which dimension is added. In general, it is noteworthy that the
outcome of the previous age stamp implicitly impacts each learning algorithm with this
hyperplane-based stimulation, without implicating either parameter or external strength
training. In addition, by default, learning is achieved using the instructor forcing strategy
whilst training. Particularly, during testing, the anticipated output, denoted by yb(t1),
substitutes the output, denoted by y(t1), which was acquired as real. The parameters b and
V are then randomly selected from the range [−1,1] once the hidden node has been added
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as a new node. However, as the model does not always converge to the range [−1, 1],
parameters may potentially be chosen using an adaptive scope selection strategy.

Technique for removing Hidden units: This approach aims to deal with high variance
issues that point to overfitting conditions. This problem may be resolved by either simpli-
fying the network layout or by lowering the number of hidden units in the hidden layer.
When the following criterion is met, this situation is recognized:

µt
Var + σt

Var ≥ µmin
Var + 2πσmin

Var (28)

where σt
Var, µt

Var are the SD and mean, respectively, at instance, and σmin
Var , µmin

Var represents the
variance’s SD and least mean, respectively, at case t. (k) ∈ bias at level k is R ek with respect
to the (k − 1)th feature plane in which dimension is added. In general, it is noteworthy
that the outcome of the previous age stamp implicitly impacts each learning algorithm
with this hyperplane-based stimulation, without implicating either parameter or external
strength training. In addition, by default, the view learning uses the instructor forcing
strategy whilst also training. In particular, during testing, the anticipated output, denoted
by yb(t1), substitutes the output, denoted by y(t1), which was acquired as real

HSi = lim
T→∞

T

∑
i=1

Hi(t)
l
T

(29)

Pruning→ min
i=1....e1

HSi (30)

Inputs are the data obtained from sensors, like temperature, humidity, and moisture
sensors. The number of hidden layers present is directly proportional to the level of
accuracy. The output will be the decision of the detection of crop abnormality, determining
whether it is suitable to grow in that area in the present and future climatic conditions.

3. Experimental Results and Discussion
3.1. Parameter Settings

The experiment was conducted using the present weather conditions as the input
values, namely values of temperature, humidity, rain, and moisture sensors. To obtain the
results, around 32 truth frames are taken into account. For every frame, the percentage of
soil, crop and weed pixels was calculated approximately and then compared with the ones
produced by the proposed model. The simulation results are represented below in Figure 4.

The experiment was conducted using the present weather conditions as the input
values, namely values of temperature, humidity, rain, and moisture sensors from Table 1.
To obtain the results, around 32 truth frames were taken into account. For every frame, the
percentage of soil, crop and weed pixels was calculated approximately and then compared
with the ones produced by the proposed model. These introduced several solutions for
dealing with highly complex segmentation and classification process. The few advantages
of UAVs are flying at a lower altitude, being small in size, being lightweight, having high
resolution, and their portability. Machine learning approaches with UAVs have attained
more scope in scientific areas. Previous research was conducted in the same area using
Faster RCNN, SVM and ANN. The result was obtained in terms of accuracy: 87%, 78%, and
83%, respectively. Similarly, the previous study included very limited and similar datasets
and obtained some variations in the previous results, whereas our current research study
focuses on UAVs and implementing a machine-learning approach and produces the results
in terms of accuracy, precision, specificity, and mean error and produced the best result
compared to the existing models.
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Table 1. Representation of parameters and ranges.

Parameters Ranges

Pooling layer 2 by 2 along a stride of 2

Activation function ReLu

Learning rate 0.001

Weight Random normal distribution

Method of pooling Max pooling function

About 100 UAVs were selected because, as can be seen in the writing about UAV
correspondence systems, this number is seen as a standard for UAV networks. For all V2V
interchanges and for transmitting direct impressions, we set a break term of 1000 s, as
this time period is typically used in writing about helpful UAVs, as shown in Figure 5. A
representation of the parameters and ranges can be found in Table 1.
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3.2. Performance Analysis

Figures 6 and 7 below represent the weed prediction process of the proposed UAV_
data fusion model with the existing techniques, and the respective qualitative result analysis
part has been shown. Figure 7 represents the sugarcane weed prediction and the result
analysis of the proposed and existing system is shown. The color shown in both figures
represents the crop and weed images taken from the aerial view. The green color represents
the crop and the red color represents the weed from the field, which was taken from the UAV
aerial images. In the other section, Figure 8 shows the accuracy, precision, specificity, and
mean average error comparison for the proposed and existing techniques. The experiment
was conducted by giving the present weather conditions as the input values, namely values
of temperature, humidity, rain, and moisture sensors. To obtain the results, around 32 truth
frames were taken into account. For every frame, the percentage of soil, crop and weed
pixels was calculated approximately and then compared with the ones produced by the
proposed model.
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Figure 7. Qualitative Analysis of Weed is achieved for the sugarcane dataset. (A) Input Images
(B) Groundtruth (C) SegNet (D) UAV-CMS_CT (E) FANET (F) FCN (G) UAv_Data Fusion
(H) UAV_CNN.
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Figure 8 provides the recent works conducted for weed prediction using computer
vision techniques such as UAV-CMS_CT, FANET, UAV-CNN, as well as UAV-data fusion,
in which the images are augmented by adding color channels and then trained. The
results of the proposed method show a significant improvement in accuracy over the
traditional methods. This also indicates that the proposed method can be used for different
crop types and different weed species. This experimental analysis provides a detailed
analysis of the factors of the proposed model of UAV-data fusion that lead to increased
accuracy (93%) compared to the existing techniques UAV-CMS_CT (84%). FANET (87%)
and UAV-CNN (91%). The comparative graphical performance used to determine the
precision rate was carried out for various methods, namely the UAV-CMS_CT, FANET,
UAV-CNN, as well as UAV-data fusion in Figure 9. A graphical analysis was performed to
determine the precision and density of UAV. The experiment was carried out and based on
the analysis, the results demonstrate that the proposed approach attained a high precision
rate compared with the other existing techniques, as mentioned in Figure 10.
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Soil moisture is an important factor in weed detection using UAV-IoT (unmanned
aerial vehicle–internet of things). To detect the presence of weeds, UAV-IoT equipped with
airborne sensors can measure the soil moisture content near the surface. The soil moisture
data collected by the airborne sensors can then be compared with a mapped threshold
weed moisture value. If the measured soil moisture content is higher than the mapped
threshold value, then it is likely that weeds are present. These data can be used to inform
decision-making in weed management initiatives. Additionally, the use of UAV-IoT sensors
combined with other variables (e.g., temperature, pH, fertility, etc.) can help enhance weed
detection accuracy. Soil moisture is typically calculated using a combination of several
methods, including the manual measurements of soil’s water content, soil probes, and soil
moisture sensors. Soil probes use both humidity frequency domain reflectometry (H-FDR)
and time domain reflectometry (TDR) to measure the dielectric constant of soil, which can
then be converted to moisture content.

Table 2 also displays the data collected during the initial iterations experiment on this
phenomenon, involving the use of sugarcane, potato, and tomato plants. Photosynthesis
is a vital process whereby plants generate their own food and energy using light, carbon
dioxide, and water. To help achieve this, the stem aids in transporting water and minerals
from the roots to the leaves and the products from the leaves to other parts of the plant,
such as the roots. Experiments showed that increased soil moisture, meaning higher
water content, had a correlation with larger stem diameters. In Figure 11, the comparative
analysis is carried out for various methods, namely UAV-CMS_CT, FANET, UAV-CNN,
and UAV-data fusion, to determine the specificity rate. The graph plots the accuracy and
density of the UAV. The experiment was carried out, and based on the analysis, the results
demonstrated that the proposed approach attained a high specificity rate compared with the
other existing techniques. Figure 8 shows the mean average error (MAE) value of various
methods, namely UAV-CMS_CT, FANET, UAV-CNN, and UAV-data fusion. The proposed
method achieved the best MAE value compared to other methods, whereas the other
techniques achieved a higher mean absolute error rate compared with other techniques.
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Table 2. Soil moisture analysis table.

SL.NO
Soil Moisture Experimental Analysis

Rainfall (mm) Soil Moisture (%) Temperature (◦C) Humidity (%)

1 100 51 24 78

2 200 49 24 78

3 300 49 24 78

4 400 49 24 78

5 500 50 24 78
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4. Conclusions

Agriculture, in the future, may employ sophisticated IoT approaches like temperature
and moisture sensors, self-driving agricultural machines, aerial images as well as UAVs,
hyper-spectral and multi-spectral imaging devices, as well as positioning technologies,
such as GPS. This will depend on the type of sensors being used. This research includes
weed sensors used to collect the data from the field and the climate conditions to be
measured using thermometers, infrared sensors, and microwave radiometers. Numerous
data collected using these technologies are combined with growing technologies of parallel
and GPU computing, which have attracted researchers to employ as well as deploy data-
driven analysis and deep learning approaches in the agricultural domain. The limitations
found using the existing artificial intelligence techniques such as UAV-CNN, UAV_CMS_CT,
and FANET are low-resolution images, a lack of high trained data and the need for in-field
validation. Here, the IoT-based module is used to collect the data and then CNN-based
feature extraction and machine learning-based classification are carried out for the detection
of weeds and crops. This system also monitors abnormalities in crops and detects them
via feature extraction, and then its level is predicted using an FRNN-based classification
technique. The simulation results obtained reveal the optimal accuracy, precision, specificity,
and MAE for the proposed design has 0.058 improvement compared with the existing
technique. The major benefit of this proposed architecture is the ability of automatic feature
extraction achieved by analyzing the time correlation of multiple images, thereby reducing
manual feature engineering and modeling crops.

Author Contributions: Conceptualization, Writing—original draft K.V.; Supervision, M.A.A., S.A.-O.
and R.S.; Writing—original draft and review and editing, L.A. and T.P.A.; Validation, M.A.A., S.A.-O.
and R.S.; propose the new method or methodology, M.A.A., S.A.-O., R.S. and S.S.K.; Formal Analysis,



Sustainability 2023, 15, 11242 18 of 20

Investigation M.A.A., S.A.-O. and R.S.; Software, L.A. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported through the Annual Funding track by the Deanship of Scientific
Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi
Arabia (Project No. Grant No. 3332) and Princess Nourah bint Abdulrahman University Researchers
Supporting Project number (PNURSP2023R136), Princess Nourah bint Abdulrahman University,
Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data will be shared for review based on the editorial reviewer’s request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Maimaitijiang, M.; Sagan, V.; Sidike, P.; Daloye, A.M.; Erkbol, H.; Fritschi, F.B. Crop Monitoring Using Satellite/UAV Data Fusion

and Machine Learning. Remote Sens. 2020, 12, 1357. [CrossRef]
2. Kwak, G.-H.; Park, N.-W. Impact of texture information on crop classification with machine learning and UAV images. Appl. Sci.

2019, 9, 643. [CrossRef]
3. Vittorio, M. UAV and machine learning based refinement of a satellite-driven vegetation index for precision agricul-ture. Sensors

2020, 20, 2530.
4. Villegas-Ch, W.; García-Ortiz, J.; Urbina-Camacho, I. Framework for a Secure and Sustainable Internet of Medical Things,

Requirements, Design Challenges, and Future Trends. Appl. Sci. 2023, 13, 6634. [CrossRef]
5. Su, J.; Coombes, M.; Liu, C.; Zhu, Y.; Song, X.; Fang, S.; Guo, L.; Chen, W.-H. Machine Learning-Based Crop Drought Mapping

System by UAV Remote Sensing RGB Imagery. Unmanned Syst. 2020, 8, 71–83. [CrossRef]
6. Zhou, X.; Yang, L.; Wang, W.; Chen, B. UAV Data as an Alternative to Field Sampling to Monitor Vineyards Using Machine

Learning Based on UAV/Sentinel-2 Data Fusion. Remote Sens. 2021, 13, 457. [CrossRef]
7. Han, L. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data. Plant

Methods 2019, 15, 10. [CrossRef]
8. Ge, X.; Wang, J.; Ding, J.; Cao, X.; Zhang, Z.; Liu, J.; Li, X. Combining UAV-based hyperspectral imagery and machine learning

algorithms for soil moisture content monitoring. PeerJ 2019, 7, e6926. [CrossRef]
9. Ghazal, T.M.; Hasan, M.K.; Abdullah, S.N.; Bakar, K.A.; Al Hamadi, H. Private blockchain-based encryption framework using

computational intelligence approach. Egypt. Inform. J. 2022, 23, 69–75. [CrossRef]
10. Guo, Y.; Yin, G.; Sun, H.; Wang, H.; Chen, S.; Senthilnath, J.; Wang, J.; Fu, Y. Scaling Effects on Chlorophyll Content Estimations

with RGB Camera Mounted on a UAV Platform Using Machine-Learning Methods. Sensors 2020, 20, 5130. [CrossRef]
11. Eskandari, R.; Mahdianpari, M.; Mohammadimanesh, F.; Salehi, B.; Brisco, B.; Homayouni, S. Meta-Analysis of Unmanned Aerial

Vehicle (UAV) Imagery for Agro-Environmental Monitoring Using Machine Learning and Statistical Models. Remote Sens. 2020,
12, 3511. [CrossRef]

12. Zhang, Z.; Al Hamadi, H.; Damiani, E.; Yeun, C.Y.; Taher, F. Explainable artificial intelligence applications in cyber security:
State-of-the-art in research. IEEE Access 2022, 10, 93104–93139. [CrossRef]

13. Lottes, P. UAV-based crop and weed classification for smart farming. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017.

14. Ezuma, M.; Erden, F.; Anjinappa, C.K.; Ozdemir, O.; Guvenc, I. Micro-UAV Detection and Classification from RF Fingerprints
Using Machine Learning Techniques. In Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2019.
[CrossRef]

15. Mahmood, S.; Chadhar, M.; Firmin, S. Cybersecurity challenges in blockchain technology: A scoping review. Hum. Behav. Emerg.
Technol. 2022, 2022, 7384000. [CrossRef]

16. Zhou, X. Predicting within-field variability in grain yield and protein content of winter wheat using UAV-based mul-tispectral
imagery and machine learning approaches. Plant Prod. Sci. 2020, 24, 137–151. [CrossRef]

17. Radoglou-Grammatikis, P.; Sarigiannidis, P.; Lagkas, T.; Moscholios, I. A compilation of UAV applications for precision agriculture.
Comput. Netw. 2020, 172, 107148. [CrossRef]

18. Almaiah, M.A.; Al-Zahrani, A.; Almomani, O.; Alhwaitat, A.K. Classification of cyber security threats on mobile devices and
ap-plications. In Artificial Intelligence and Blockchain for Future Cybersecurity Applications; Springer International Publishing: Cham,
Switzerland, 2021; pp. 107–123.

19. Böhler, J.; Schaepman, M.; Kneubühler, M. Crop classification in a heterogeneous arable landscape using uncalibrated UAV data.
Remote Sens. 2018, 10, 1282. [CrossRef]

20. Hall, O.; Dahlin, S.; Marstorp, H.; Archila Bustos, M.; Öborn, I.; Jirström, M. Classification of maize in complex smallholder
farming systems using UAV imagery. Drones 2018, 2, 22. [CrossRef]

https://doi.org/10.3390/rs12091357
https://doi.org/10.3390/app9040643
https://doi.org/10.3390/app13116634
https://doi.org/10.1142/S2301385020500053
https://doi.org/10.3390/rs13030457
https://doi.org/10.1186/s13007-019-0394-z
https://doi.org/10.7717/peerj.6926
https://doi.org/10.1016/j.eij.2022.06.007
https://doi.org/10.3390/s20185130
https://doi.org/10.3390/rs12213511
https://doi.org/10.1109/ACCESS.2022.3204051
https://doi.org/10.1109/aero.2019.8741970
https://doi.org/10.1155/2022/7384000
https://doi.org/10.1080/1343943X.2020.1819165
https://doi.org/10.1016/j.comnet.2020.107148
https://doi.org/10.3390/rs10081282
https://doi.org/10.3390/drones2030022


Sustainability 2023, 15, 11242 19 of 20

21. Sharma, B.; Sharma, L.; Lal, C.; Roy, S. Anomaly based network intrusion detection for IoT attacks using deep learning technique.
Comput. Electr. Eng. 2023, 107, 108626. [CrossRef]

22. Al Nafea, R.; Almaiah, M.A. Cyber security threats in cloud: Literature review. In Proceedings of the 2021 International Conference
on Information Technology (ICIT), Amman, Jordan, 14–15 July 2021; pp. 779–786.

23. Velayudhan, N.K.; Pradeep, P.; Rao, S.N.; Devidas, A.R.; Ramesh, M.V. IoT-enabled water distribution systems-a comparative
technological review. IEEE Access 2022, 10, 101042–101070. [CrossRef]

24. Almaiah, M.A.; Hajjej, F.; Ali, A.; Pasha, M.F.; Almomani, O. A Novel hybrid trustworthy decentralized authentication and data
preservation model for digital healthcare Iot based CPS. Sensors 2022, 22, 1448. [CrossRef]

25. Nijhawan, R.; Sharma, H.; Sahni, H.; Batra, A. A deep learning hybrid CNN framework approach for vegetation cover mapping
using deep features. In Proceedings of the 13th International Conference on SignalImage Technology and Internet-Based Systems,
Jaipur, India, 4–7 December 2017; pp. 192–196.

26. Baeta, R.; Nogueira, K.; Menotti, D.; Santos, J.A.D. Learning Deep Features on Multiple Scales for Coffee Crop Recog-nition. In
Proceedings of the 30th Conference on Graphics, Patterns and Images, Niteroi, Brazil, 17–20 October 2017; pp. 262–268.

27. Almaiah, M.A.; Ali, A.; Hajjej, F.; Pasha, M.F.; Alohali, M.A. A lightweight hybrid deep learning privacy preserving model for
FC-based industrial internet of medical things. Sensors 2022, 22, 2112. [CrossRef]

28. Siam, A.I.; Almaiah, M.A.; Al-Zahrani, A.; Elazm, A.A.; El Banby, G.M.; El-Shafai, W.; El-Samie, F.E.A.; El-Bahnasawy, N.A. Secure
health monitoring communication systems based on IoT and cloud computing for medical emergency applications. Comput.
Intell. Neurosci. 2021, 2021, 5016525. [CrossRef]

29. Bubukayr, M.A.; Almaiah, M.A. Cybersecurity concerns in smart-phones and applications: A survey. In Proceedings of the 2021
International Conference on Information Technology (ICIT), Amman, Jordan, 14–15 July 2021; pp. 725–731.

30. Alamer, M.; Almaiah, M.A. Cybersecurity in Smart City: A systematic mapping study. In Proceedings of the 2021 International
Conference on Information Technology (ICIT), Amman, Jordan, 14–15 July 2021; pp. 719–724.

31. AlMedires, M.; AlMaiah, M. Cybersecurity in Industrial Control System (ICS). In Proceedings of the 2021 International Conference
on Information Technology (ICIT), Amman, Jordan, 14–15 July 2021; pp. 640–647.

32. Bah, M.D.; Hafiane, A.; Canal, R. Weeds detection in uav imagery using slic and the hough transform. In Proceedings of the
2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA), Montreal, QC, Canada, 28
November—1 December 2017; pp. 1–6.

33. Kampourakis, V.; Gkioulos, V.; Katsikas, S. A systematic literature review on wireless security testbeds in the cyber-physical
realm. Comput. Secur. 2023, 103383. [CrossRef]

34. Almudaires, F.; Almaiah, M. Data an Overview of Cybersecurity Threats on Credit Card Companies and Credit Card Risk
Mitigation. In Proceedings of the 2021 International Conference on Information Technology (ICIT), Amman, Jordan, 14–15 July
2021; pp. 732–738. [CrossRef]

35. Suleski, T.; Ahmed, M.; Yang, W.; Wang, E. A review of multi-factor authentication in the Internet of Healthcare Things. Digit.
Health 2023, 9, 20552076231177144. [CrossRef]

36. dos Santos Ferreira, A.; Matte Freitas, D.; Gonc¸alves da Silva, G.; Pistori, H.; TheophiloFolhes, M. Weed detection in soybean
crops using ConvNets. Comput. Electron. Agric. 2017, 143, 314–324. [CrossRef]

37. Albalawi, A.M.; Almaiah, M.A. Assessing and reviewing of cyber-security threats, attacks, mitigation techniques in IoT envi-
ronment. J. Theor. Appl. Inf. Technol. 2022, 100, 2988–3011.

38. Rahnemoonfar, M.; Sheppard, C. Real-time yield estimation based on deep learning. In Proceedings Volume 10218, Autonomous Air
and Ground Sensing Systems for Agricultural Optimization and Phenotyping II; SPIE: Bellingham, WA, USA, 2017.

39. Sampathkumar, A.; Murugan, S.; Rastogi, R.; Mishra, M.K.; Malathy, S.; Manikandan, R. Energy Efficient ACPI and JEHDO
Mechanism for IoT Device Energy Management in Healthcare. In Internet of Things in Smart Technologies for Sustainable Urban
Development; Springer: Berlin/Heidelberg, Germany, 2020; pp. 131–140.

40. Huang, H.; Deng, J.; Lan, Y.; Yang, A.; Zhang, L.; Wen, S.; Zhang, H.; Zhang, Y.; Deng, Y. Detection of helminthosporium leaf
blotch disease based on UAV imagery. Appl. Sci. 2019, 9, 558. [CrossRef]

41. Almaiah, M.A.; Hajjej, F.; Lutfi, A.; Al-Khasawneh, A.; Alkhdour, T.; Almomani, O.; Shehab, R. A conceptual framework for
deter-mining quality requirements for mobile learning applications using Delphi Method. Electronics 2022, 11, 788. [CrossRef]

42. Latif, G.; Alghazo, J.M.; Maheswar, R.; Sampathkumar, A.; Sountharrajan, S. IoT in the Field of the Future Digital Oil Fields
and Smart Wells. In Internet of Things in Smart Technologies for Sustainable Urban Development; Springer: Cham, Switzerland,
2020; pp. 1–17.

43. Wiling, B. Monitoring of Sona Massori Paddy Crop and its Pests Using Image Processing. Int. J. New Pract. Manag. Eng. 2017,
6, 1–6. [CrossRef]

44. Althunibat, A.; Almaiah, M.A.; Altarawneh, F. Examining the factors influencing the mobile learning applications usage in higher
education during the COVID-19 pandemic. Electronics 2021, 10, 2676. [CrossRef]

45. Arumugam, S.; Shandilya, S.K.; Bacanin, N. Federated Learning-Based Privacy Preservation with Blockchain Assistance in IoT
5G Heterogeneous Networks. J. Web Eng. 2022, 21, 1323–1346. [CrossRef]

46. Sampathkumar, A.; Tesfayohani, M.; Shandilya, S.K.; Goyal, S.B.; Jamal, S.S.; Shukla, P.K.; Bedi, P.; Albeedan, M. Internet of
Medical Things (IoMT) and Reflective Belief Design-Based Big Data Analytics with Convolution Neural Network-Metaheuristic
Optimization Procedure (CNN-MOP). Comput. Intell. Neurosci. 2022, 2022, 2898061. [CrossRef]

https://doi.org/10.1016/j.compeleceng.2023.108626
https://doi.org/10.1109/ACCESS.2022.3208142
https://doi.org/10.3390/s22041448
https://doi.org/10.3390/s22062112
https://doi.org/10.1155/2021/8016525
https://doi.org/10.1016/j.cose.2023.103383
https://doi.org/10.1109/icit52682.2021.9491114
https://doi.org/10.1177/20552076231177144
https://doi.org/10.1016/j.compag.2017.10.027
https://doi.org/10.3390/app9030558
https://doi.org/10.3390/electronics11050788
https://doi.org/10.17762/ijnpme.v6i02.54
https://doi.org/10.3390/electronics10212676
https://doi.org/10.13052/jwe1540-9589.21414
https://doi.org/10.1155/2022/2898061


Sustainability 2023, 15, 11242 20 of 20

47. Murugan, S.; Sampathkumar, A.; Raja, S.K.S.; Ramesh, S.; Manikandan, R.; Gupta, D. Autonomous Vehicle Assisted by Heads up
Display (HUD) with Augmented Reality Based on Machine Learning Techniques. In Virtual and Augmented Reality for Automobile
Industry: Innovation Vision and Applications. Studies in Systems, Decision and Control; Hassanien, A.E., Gupta, D., Khanna, A., Slowik,
A., Eds.; Springer: Cham, Switzerland, 2022; pp. 45–64. [CrossRef]

48. Jat, N.C.; Kumar, C. Design Assessment and Simulation of PCA Based Image Difference Detection and Segmen-tation for Satellite
Images Using Machine Learning. Int. J. Recent Innov. Trends Comput. Commun. 2022, 10, 1–11. [CrossRef]

49. Vaidhehi, M.; Malathy, C. An unique model for weed and paddy detection using regional convolutional neural networks. Acta
Agric. Scand. Sect. B—Soil Plant Sci. 2022, 72, 463–475. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/978-3-030-94102-4_3
https://doi.org/10.17762/ijritcc.v10i3.5520
https://doi.org/10.1080/09064710.2021.2011395

	Introduction 
	Methodology 
	CNN-Based Feature Extraction 
	Fast Recurrent Neural Networks (FRNN) Based Classification 
	Gradient Computing with Back-Propagation 
	Hidden Layer Online Adaptation 

	Experimental Results and Discussion 
	Parameter Settings 
	Performance Analysis 

	Conclusions 
	References

