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ARTICLE INFO ABSTRACT

Keywords: Photovoltaic (PV) array performance is notably affected by Partial Shading Conditions (PSCs) by causing
PV array reconfiguration mismatch losses, reducing energy output, and compromising system reliability. The proposed study outlines a
PSC

dynamic reconfiguration strategy for PV arrays under PSC using the Multi-Objective Nutcracker Optimization
Algorithm (MONOA). MONOA is a recently developed bio-inspired metaheuristic designed for multi-objective
optimization problems. It integrates fast opposition-based learning, crowding distance and non-dominated
sorting to effectively search for optimal PV switching configurations that maximize output power and mini-
mize current imbalance and switching activity. A Total Cross-Tied (TCT) based 9 x 9 PV array is used as test
system, and a novel Objective Function (OF) is proposed for enhancing solution quality without requiring weight
tuning. The performance of MONOA is compared against well-established algorithms such as Improved Prairie
Dog Optimization (IPDO), Atom Search Optimization (ASO), and African Vultures Optimization Algorithm
(AVOA) under two different shading patterns. Simulation results demonstrate that MONOA consistently achieves
higher power output, better fill factor, lower mismatch loss, and the fastest execution time among all tested

Multi-objective optimization
Mismatch reduction
MONOA

methods.

1. Introduction

Studies conducted in recent years have prioritized enhancing
maximal power harvesting from PV systems during fluctuating irradia-
tion and temperature changes. Enhancing the power generation effi-
ciency elevates the PV plant operational performance and reduces unit
cost of generated power [1,2]. Solar PV is a preferred renewable source
due to its abundant availability and year-round accessibility, even in
remote and off-grid locations. Furthermore, it stands out for its afford-
able installation, convenient transportation and pollution-free operation
[3,4]. Despite their efficiency, PV systems encounter electrical and
physical problems, including shaded faults, converter switch faults,
open circuit faults, line-to-line faults, hot spots and arc faults. At the
same time, mismatch effects are a common issue in PV systems, leading
to a drop in power generation efficiency due to module cracking or
inconsistent radiation exposure across the array [5,6]. This effect, when
present in PV arrays, results in significant power degradation, defined as
discrepancy among the peak potential array power and aggregate
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maximum power of its modules [7]. When the radiation level varies
across different sections of a PV array, despite consistent solar energy
input per square meter, it leads to a condition known as partial shading.
The shading conditions affecting PV systems are generally divided into
static and dynamic types. The former is caused due to transient factors
like clouds, leaves, dust and birds sitting on the panels, while the latter is
caused by permanent features such as buildings and trees [8,9]. Fig. 1
clearly illustrates the PSC impact on Maximum Power Point (MPP).

In addition to performance degradation, PSC poses a threat to the
integrity of PV system components, causing diode failures in the form of
open or short circuits. Hence, when PSC affects a string, bypass diodes
isolate underperforming modules by short-circuiting them [10]. To
overcome MPPT challenges under partial shading, both passive and
active solutions have been proposed. Passive methods, including bypass
diodes and configurations like Series-Parallel (SP), Bridge-Link (BL),
Honeycomb and Total-Cross-Tied (TCT) aim to reduce shading effects.
Among these configurations, which are represented in Fig. 2, the TCT
arrangement has demonstrated superior effectiveness in maximizing
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Fig. 1. MPP behaviour analysis in the presence of PSC.

output under PSCs [11].

Active techniques to mitigate PSC in PV systems are broadly cate-
gorized into three main approaches, where each offers distinct benefits
and limitations. One method involves the use of multi-tracker con-
verters, which allow different sections of the PV array to operate at their
respective MPPs, thereby improving overall efficiency under uneven

(a)

©

Renewable Energy 257 (2026) 124754

irradiance [12]. Another technique employs micro converters, where
each panel or a small group of panels is equipped with its own power
converter, enhancing granularity in control and power optimization.
The third approach focuses on reconfiguring PV arrays to adapt to
shading patterns, ensuring more uniform power generation and mini-
mizing mismatch losses [13,14]. Generally, PV module reconfiguration
techniques are divided into static and dynamic types. Dynamic ap-
proaches, including Electrical Array Reconfiguration (EAR), involve
actively modifying the electrical configuration of modules to optimize
performance under partial shading conditions. Static approaches
maintain a constant electrical setup and involve only the physical
rearrangement of modules [15]. Compared to static methods, dynamic
approaches enhance the operational efficiency of PV systems, especially
under PSCs. Unlike static techniques, which involve fixed physical
rearrangement of modules, dynamic reconfiguration adjusts electrical
connections in real time without altering the physical layout. This
adaptability allows for optimal power extraction by minimizing
mismatch losses and maintaining high efficiency as shading patterns
change. Additionally, dynamic systems are easier to automate, require
less maintenance, and eliminate the need for manual intervention,
making them more suitable for large-scale and smart PV systems [16,
171.

However, existing dynamic reconfiguration approaches for PV sys-
tems under partial shading conditions face certain limitations that affect

(b)

@

Fig. 2. Different PV module interconnection configurations (a) SP (b) BL (¢) TCT and (d) Honeycomb.
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their efficiency and practicality. Many methods rely on heuristic or
single-objective optimization techniques, which often prioritize maxi-
mizing power extraction but neglect important aspects such as switching
activity, execution time, or mismatch current reduction, leading to
suboptimal long-term performance [18]. Some algorithms, such as
traditional swarm-based or evolutionary approaches, suffer from slow
convergence, high computational demand and susceptibility to local
optima, which makes them less suitable for real-time implementation
[19]. Moreover, several strategies require frequent and large-scale
switching of array interconnections, resulting in increased hardware
wear, higher control complexity, and added energy losses during tran-
sitions. Another major issue is the dependence on weight-based objec-
tive functions, where improper weight selection can bias the
optimization and reduce robustness across different shading scenarios.
Finally, scalability remains a challenge, as many existing methods
struggle to maintain efficiency and low computational cost when
applied to large-scale PV arrays, limiting their deployment in
utility-level solar farms [20,21]. A summary of research works on dy-
namic reconfiguration of PV modules, along with their pros and cons, is
provided in Table 1.

In this research. MONOA is implemented for the dynamic reconfi-
guration of PV array under PSC. This technique maximizes the power
output, minimizes the number of switching actions in addition to
reducing component wear and reconfiguration frequency. With the
incorporation of multi-objective framework, MONOA offers a more
holistic and practical solution. It also promotes long-term PV system
efficiency and durability. The adaptive nature of the optimization al-
gorithm enables better responsiveness to variable shading patterns.

2. System modelling
2.1. PV module modelling

Modelling of PV cell is imperative in its design process as it ulti-
mately contributes to the heightened efficiency of the entire PV system.
PV cells, when accurately modelled, effectively replicate the actual
performance of a PV system. Nevertheless, the development of such
model is difficult due to the inherent non-linearity of the cells. Conse-
quently, significant efforts have been devoted by several researchers for
developing an accurate PV model that enhances plant efficiency. These
efforts involve comprehensive analysis and range of optimization tech-
niques that has led to the evolution of primary diode-based PV models.
Due to fewer parameters, simpler design and ease of implementation,
the single-diode PV model is generally chosen over the other two
models. Fig. 3 provides the PV model electric circuit diagram, encom-
passing a current source Ipy, which is coupled counter parallel to diode
D;. Here, KCL is used for evaluating the produced model current,

I=Ipy —Ip, —Ip (€8]

In the above equation, Iy specifies PV source current, I, is diode
current and I current across shunt resistance R,. With the substitution of

Ip, and I, in Equation (1),
1% V + IR
I=Iy—1I 1)) - (—= 2
eta(en (o 1)) - ("2 @

In this equation, the thermal voltage is specified as V, and is

computed using the expression NST"T, where the Boltzmann constant is

specified as k. Moreover, the term Iy; specifies diode leakage current, a;
is the Ideality factor, N, is count of series coupled cells and q is the
electric charge of an electron. Given the strong influence of environ-
mental condition on PV output, the generated current is mathematically
defined as,

Iy (c%) Lo+ k(T T) ®

Table 1
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Evaluation of dynamic PV reconfiguration strategies.

Ref Technique

Strongpoints

Shortcomings

[22]  Fuzzy logic

[23] Neuro-fuzzy
algorithm

[24] Improved Pelican
Optimization
algorithm

[25] Evolutionary based
Pareto optimization
algorithm

[26] Square Dynamic
Reconfiguration
(SDR)

[27] Genetic Algorithm
(GA)

[28] JAYA algorithm

[29] Improved Prairie
Dog Optimization
(IPDO)

[30] Atom Search
Optimization (ASO)

[31] African Vultures
Optimization
Algorithm (AVOA)

Ensures rapid and
accurate selection of
optimal configurations,
which are suitable for
systems of various
capacities.

It is a fully automatic,
online method that
enhances PV array
performance under PSC
without requiring
auxiliary modules.

It simultaneously
optimizes power output
and minimizes
switching actions.

Minimizes the number
of switch operations
and comprises of
multiple
reconfiguration
schemes.

This quadrant-based
approach offers simple
and structured design
with low hardware
complexity.

It provides improved
power output and is
capable of handling
regular and irregular
configurations.

It is a simple technique
with low computational
burden and improved
power output.

The algorithm performs
well on large arrays.

This technique has fast
execution time and
significantly reduces
mismatch losses.

1t offers high power
enhancement with
reduced power losses.

Relying on short-circuit
current for radiation
estimation proves to be
both complex and
economically
demanding.

Its reliance on global
measurements limits
detailed analysis of
localized faults.

The method optimizes
one column at a time,
which lead to local
optima rather than a
global best
configuration.
Ineptness in handling
fast-changing shading
patterns.

The fixed quadrant logic
of this technique is its
major shortcoming.

The problem of
premature convergence
is its major limitation.

It only considers power
output and does not
optimize switch count
or system wear.
Cell-level switching is
highly granular and
demands a very
complex switching
matrix.

It does not focus on
minimizing switching
actions.

It does not minimize
switching activity,
component aging or

reconfiguration
frequency.
Rg I

Ipy T

1101

Yo, 2
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Fig. 3. Single diode electric circuit.

In this context, I is the current measured when the terminals are
shorted under standard test conditions (STC). Moreover, T and G are the
actual temperature and irradiation values, respectively. Similarly, the
value of Ty = 25°C and G, = 1000W/m?. The current coefficient factor
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is specified as k;.
2.2. TCT topology for PV arrays

TCT is widely recognized as an effective connection strategy to meet
power requirements. Research findings confirm its enhanced perfor-
mance over BL, HC and SP connection methods. A TCT connection is
created by linking each row of an SP layout using crossties. To demon-
strate, a 9 x 9 TCT PV array is used, as seen in Fig. 4.

The configuration encompasses nine columns and nine rows. The
voltage and current in a TCT-connected system are determined as,

9
Varray = Zm:l VM,,. (4)
I 729: Gy m=1,2,3,...,9 (5)
Rm — - Gs Mpn |1t = 1,4, 9; -+
n—

In this equation, I, is the generated current in row m, Vg, is the
total terminal voltage, while I, and V4, correspond to module current

and voltage in row x at STC (GS =1000 m—"ﬁ) , respectively. To maximize

the PV array power output, shading is required to be consistently and
evenly distributed across the entire module surface. The TCT arrange-
ment fails to achieve a uniform distribution under PSC. In addition, the
TCT configuration demands a substantial switch count, calculated as 2x
Mx (M+1)—2+2 x N x (M xN—M) with N and M indicating the total
count of columns and rows in array.

Motivated by the need for simplicity and flexibility, a meta-heuristic
optimization-based approach is proposed to identify the optimal
switching matrix interconnection as shown in Fig. 5.

2.3. Formulation of objective function (OF)

Establishing OF is a fundamental requirement, in order to maximize
power output under uniformly distributed shading, a novel OF is pro-
posed. This function is defined as the ratio of the total power produced
by the PV array to the absolute error between the maximum and mini-
mum row currents, and is formulated as follows,

Array ‘power

— Inin|+ € ©®

Maximize(obj(i)) =

|Imax

In this equation, the i-th element fitness value is represented as obj(i),
€ is a positive constant preventing singularity without significantly
altering the optimization process. This ensures numerical stability and

PRACTICAL SOLAR PV MODULE
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avoids abrupt changes in the objective function when current imbalance
is minimal. Additionally, under conditions where I = I, the system
is already well-balanced with negligible mismatch losses, meaning that
maximizing array power naturally dominates the optimization. In the
row current vector I = [I},I5,I3,...,I5], I, and I,4, indicate the lowest and
highest current values, respectively. The total array output power is,

X
Arraypower = ZIRM X Vm (7)

m=1
The core objective is to enhance power output while reducing the
difference between the highest and lowest row currents, thereby main-
taining a uniform shading pattern on the PV surface.

2.4. Dynamic reconfiguration using MONOA

MONOA is a recently developed nature-inspired metaheuristic
designed for multi-objective optimization problems, and it has been
adapted here for PV array reconfiguration under PSC. It builds upon the
Nutcracker Optimization Algorithm (NOA), a single-objective optimizer
inspired by the foraging and caching behaviour of nutcracker birds. In
NOA'’s metaphor, each candidate solution is a nutcracker bird, and the
algorithmic operators mimic the bird’s strategies for gathering seeds and
storing them for future use. MONOA extends NOA by incorporating
three key enhancements to handle multiple objectives: an opposite-
learning strategy for initialization, a fast Non-Dominated Sorting
(NDS) approach, and a crowding distance mechanism for Pareto-optimal
selection. These additions ensure that MONOA evolves a diverse set of
non-dominated solutions and converge toward the Pareto front of the
multi-objective problem. In the context of PV reconfiguration, each
nutcracker agent’s position encodes a particular wiring configuration.
The algorithm iteratively updates these positions through a series of
exploration and exploitation phases named after the bird’s behaviours:
foraging, storage, cache-search and recovery, each governed by specific
mathematical update rules. Through these phases, MONOA alternates
between exploring new configurations and exploiting knowledge of the
best-found configurations, all while evaluating solutions on multiple
objectives and using Pareto-based criteria to guide the search toward an
optimal reconfiguration. Fig. 6 indicates the flowchart of MONOA for
dynamic reconfiguration of PV arrays. The algorithm starts with an
opposition-based population initialization, where for each randomly
initialized position X;;(0), its opposite is generated as,

Xi*(0)=L; + U; — X;(0) ©)]
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Fig. 4. PV module behaviour in a TCT-connected 9 x 9 solar array.
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Fig. 6. Flowchart of MONOA for dynamic reconfiguration of PV arrays.

Where, L; and U; are the lower and upper bounds of the j-th dimension.

T3, < T3y
During the foraging phase, an agent updates its position based on pop- U= T4, <T3 (10)
ulation mean and random influences as, 75, otherwise
X+ y(XfU — XEJ.) + ur2 (Uj — L), if 1 < maandt < TmT“x With 73,74,75 as random values drawn from predefined distributions.
ot T The storage phase moves the solution towards the best found so far,
L= . max
ij )(tcj+ﬂ(X2J—X§3J>ﬂ~](rl <5)-T‘2(Uj—Lj),lf‘[1 <‘L'2£U’ldt>T Xf;rl :X§+l.y,.(X£as[_X$) (11)

Xt

ij» Otherwise

© Where, [ =1 — ;- linearly decreases over time and y' is a Lévy step. In
the cache-search phase, the agent generates two reference points, RP1
Where, X4, X, X¢ are randomly selected agents, X, is the mean position, and RP2. If § = 5, RP1 is calculated as,

y is a Lévy-distributed step and y is the switching coefficient selected as, RP1E = X' +a cos(0) (X, — X5) + aRP 12)

and otherwise as,
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RP1{=X!+a(X}, —X}) + aRP 13)
RP2 is similarly generated using,

RP2!=X! + a(U—-L) 14)
The convergence control parameter «a is defined as,

2
t

1-——) .,r r:

( Tmax)71>2

a= (15)
£\
—— | , otherwise
(5.2)
The agent then updates its position toward RP1 using,
X0 =X 4 (RPY; - X)) as)

If the solution does not improve, the agent performs the recovery
phase, where the position is updated using RP2 and the best-known
solution,

Xf;r ‘X;zestl]_'_pl (RP X?zext‘)) +p2 (C;_RP]) (17)
Alternatively,
X" =X + 1 (RP2 - X;) as)

MONOA also employs fast non-dominated sorting to classify solu-
tions based on Pareto dominance, and crowding distance to maintain
solution diversity,

CD; = Zﬁurl—fmml) 19)

Where, f; is the j-th objective and M is the number of objectives.

Table 2 lists out the parameters of MONOA which are tuned using
Cross-validation. This involves systematically testing different param-
eter settings across multiple partial shading scenarios to identify values
that deliver consistently good performance rather than optimizing for a
single case. In practice, the dataset of shading patterns is divided into
training and validation subsets: the training set is used to run MONOA
with various combinations of population size, iteration limits and con-
trol parameters, while the validation set evaluates how well these tuned
settings generalize to unseen conditions. Performance metrics such as
obtained power, mismatch loss, fill factor and execution time are
compared across folds and the parameter set that yields stable results
with minimal variance is selected. This approach prevents overfitting of
parameters to specific shading patterns and promotes that MONOA re-
mains robust across a wide range of real-world operating conditions.
Moreover, cross-validation provides insights into parameter sensitivity,
helping designers strike a balance between computational efficiency and
optimization accuracy, which is especially critical for real-time PV array
reconfiguration.

The algorithm selects solutions with lower ranks and higher
crowding distances. By iteratively applying these exploration and
exploitation mechanisms, MONOA identifies an optimal or near-optimal
set of PV module interconnections that maximize output power while
minimizing current imbalance and switch usage. This strategy promotes
robust PV performance in dynamically shaded environments with min-
imal loss and high adaptability.

Table 2

Parameters of MONOA.
Parameters Values
Population size 50
Maximum iterations 100
Learning coefficient 0.5-1.0
Influence factor 0.1-0.9
Threshold probability [0,1]
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3. Results and discussion

In the first phase, the proposed MONOA is evaluated and compared
with three contemporary optimization techniques: IPDO, AVOA and
ASO. All three algorithms are implemented using the multi-objective
fitness function designed for PV array reconfiguration under PSCs.
This function aims to enhance the total power output of the array while
minimizing current deviations across the rows. The goal of this com-
parison is to assess the effectiveness of MONOA in optimizing the
switching configuration of the PV array and maintaining current uni-
formity, which is essential for mitigating mismatch losses. The second
phase involves a comprehensive performance analysis using multiple
evaluation metrics. These metrics help determine the consistency, effi-
ciency, and robustness of MONOA when compared to IPDO, AVOA and
ASO across different shading scenarios. The simulations are conducted
on a 9 x 9 PV array configured in a TCT topology. Each algorithm is
executed for 30 independent runs, with a population size of 20 and 100
iterations per run. The simulation environment is set up on MATLAB.
The electrical parameters of the PV module are: Short-Circuit Current =
5.2 A and Open-Circuit Voltage = 44.2 V.

To analyse the effectiveness of the proposed OF, this section presents
a comparative evaluation of algorithm performance using both the
conventional weighted OF and the newly formulated one. The analysis is
conducted using a 9 x 9 PV array subjected to two types of PSCs, which
are the short broad (pattern 1) and long broad (pattern 2) shading,

e Pattern 1 involves different sunlight levels across the array: 900, 800,
600, 400, and 200 W/m?.

e Pattern 2 has the first six columns fully illuminated (900 W/m?),
while the others receive reduced irradiance of 800, 700, 400, and
300 W/m?

Fig. 7 (a) and 7 (b) and 8 (a), 8 (b) show the TCT-connected shaded
PV array and the reconfigured layouts generated depending on both the
traditional weighted objective function and the proposed one, for
pattern 1 and pattern 2, respectively. The related values of current,
voltage, and power are calculated and listed in Tables 3-6 for each
pattern (appendix). The methodology used to compute the row-wise
current, voltage, and power for pattern 1, as shown in Figs. 7 and 8, is
detailed in the appendix section.

Figs. 9 and 10 illustrate the I-V and P-V characteristics of the pro-
posed MONOA algorithm in comparison with IPDO, AVOA, ASO and the
traditional TCT configuration under shading patterns 1 and 2. In both
cases, the TCT method demonstrates significantly lower performance,
with multiple power peaks, sharp drops in current and clear mismatch
losses due to partial shading. In contrast, MONOA consistently delivers
the highest and most stable power output, indicating effective PV array
reconfiguration and strong mitigation of current mismatches.

Table 7 presents the performance of various PV array reconfiguration
algorithms in terms of power extraction and mismatch loss under two
partial shading patterns. For both patterns, the traditional TCT config-
uration shows the lowest obtained power output and the highest
mismatch loss, confirming its limited ability to handle mismatch effects.
Among the metaheuristic algorithms, MONOA consistently demon-
strates superior performance.

Table 8 presents the fill factor values for five PV reconfiguration
methods under shading patterns 1 and 2. The results show that the
traditional TCT method yields the lowest fill factor in both scenarios,
with values of 0.495 and 0.681 for patterns 1 and 2, respectively; indi-
cating poor efficiency and high mismatch losses. In contrast, all
metaheuristic-based methods demonstrate significantly improved fill
factors, reflecting enhanced power extraction and better utilization of
the PV array. Among the algorithms, MONOA consistently achieves the
highest fill factors.

Table 9 presents the mean execution times of various optimization
algorithms used for PV array reconfiguration under shading patterns 1
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Fig. 7. Shading pattern distribution in PV array configurations optimized by different algorithms under pattern 1(a) Weighted OF and (b) proposed OF.

and 2. The results indicate that MONOA is the most computationally
efficient approach, recording the lowest execution times of 0.3 s for
pattern 1 and 0.32 s for pattern 2.

Table 10 summarizes the performance of the proposed MONOA al-
gorithm under different operating conditions ranging from no shading to
severe partial shading. In the absence of shading, MONOA is able to
extract the full global peak of 14,617.349 W with zero mismatch loss, a
high fill factor of 0.85 and the fastest execution time of 0.28 s, con-
firming its ability to fully utilize array capacity under ideal conditions.
Under mild shading, the obtained power drops slightly to 13,137.476 W
with a mismatch loss of 1479.873 W, while maintaining a high fill factor
of 0.83 and similar execution time of 0.29 s. In the moderate shading
scenario, power extraction reduces further to 11,657.603 W with a
mismatch loss of 2959.746 W and a fill factor of 0.812, highlighting the
growing effect of mismatch losses; execution time remains within 0.32 s,
showing the algorithm’s consistency in convergence speed. Under se-
vere shading, MONOA still delivers 10,521.470 W while limiting
mismatch loss to 4095.879 W and maintaining a reasonable fill factor of

0.792, again with a rapid convergence time of 0.32 s.

Table 11 presents the comparison of switching activity across
different PV array reconfiguration approaches. The results indicate that
traditional metaheuristic methods such as ASO and AVOA involve
relatively high switching activity, requiring 40 and 36 switch operations
per reconfiguration, respectively, which scale up to 240 and 216
switches per hour if six reconfigurations occur per hour. MOPSO and
NSGA-II show moderate switching requirements, averaging 30 and 26
operations per reconfiguration, corresponding to 180 and 156 per hour.
IPDO further reduces the switching activity to 22 per reconfiguration,
reflecting better efficiency in minimizing unnecessary rewirings. In
contrast, the proposed MONOA achieves the lowest switching activity,
requiring only 10 switches per reconfiguration, which corresponds to 60
switches per hour representing a significant reduction of approximately
75 % compared to ASO. This reduction highlights MONOA’s capability
to balance power extraction with minimal switching overhead, leading
to lower hardware stress, extended switch lifespan, and improved sys-
tem reliability.
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Fig. 8. Shading pattern distribution in PV array configurations optimized by different algorithms under pattern 2 (a) Weighted OF and (b) proposed OF.

3.1. Real-time applicability of the concept

For real-time implementation of the proposed MONOA-based dy-
namic reconfiguration strategy, several prerequisites and considerations
must be addressed to ensure practical applicability. First, fast and reli-
able measurement of PV array parameters such as voltage, current and
irradiance is essential, requiring accurate sensors and efficient data
acquisition systems. The algorithm itself must exhibit low

computational complexity and rapid convergence, as real-time reconfi-
guration demands decisions within milliseconds to seconds to track fast-
changing shading patterns. Hardware platforms should be capable of
supporting parallel processing and handling the switching operations
without introducing delays or excessive energy overhead. Furthermore,
robustness against measurement noise, communication delays and
hardware switching constraints must be ensured to maintain stability
and accuracy. System-level considerations, including scalability for
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Fig. 9. Performance comparison assessment in pattern 1 for algorithms using I-V and P-V characteristics.
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Fig. 10. Performance comparison assessment in pattern 2 for algorithms using I-V and P-V characteristics.

Table 7
Performance analysis of PV reconfiguration methods based on power extraction and mismatch loss.
Approach Pattern 1 Pattern 2
Real GP (W) Obtained GP (W) Mismatch Loss (W) Real GP (W) Obtained GP (W) Mismatch Loss (W)
TCT 14617.349 8168.949 6448.400 14617.349 10798.578 3818.771
ASO 14617.349 10417.625 4199.724 14617.349 11503.609 3113.740
AVOA 14617.349 10521.470 4095.879 14617.349 11549.155 3068.194
IPDO 14617.349 10484.241 4133.108 14617.349 11556.603 3060.746
MOPSO 14617.349 10500.000 4117.349 14617.349 11600.000 3017.349
NSGA-II 14617.349 10510.000 4107.349 14617.349 11620.000 2959.349
MONOA 14617.349 10521.470 4095.879 14617.349 11657.603 2959.746
Table 8 Table 10
Performance analysis of PV reconfiguration methods based on Fill factor. Performance analysis of MONOA under varying conditions.
AVOA 0.782 0.778 Conditions Real GP Obtained Mismatch Fill Execution
IPDO 0.750 0.787 w) GP (W) loss (W) factor time (s)
MOPSO 0.785 0.795
NSGA-IT 0.789 0.801 No shading 14,617.349 14,617.349 0.000 0.850 0.28
MONOA 0.792 0.812 Mild ' 14,617.349 13,137.476 1479.873 0.830 0.29
shading
Moderate 14,617.349  11,657.603  2,9559.746  0.812  0.32
shading
Table 9 Severe 14,617.349 10,521.470 4095.879 0.792 0.32
. . . . hadi
Performance analysis of PV reconfiguration methods based on mean execution shading
time.
Approach Pattern 1 Pattern 2 large PV arrays, minimization of switching frequency to avoid wear on
ASO 1.2s 1.18s relays or power electronics and integration with existing MPPT units,
AVOA 1.11s 1.14s are also critical. Overall, achieving real-time applicability requires
IPDO 0.42s 0.43s balancing computational efficiency, hardware compatibility and oper-
MOPSO 0.65s 0.67s ational reliability to ensure the algorithm transitions effectively from
NSGA T 0725 0745 imulation to field deployment
MONOA 0.3s 0.32s stmwation to Lield deployment.

The proposed MONOA-based reconfiguration concept shows strong
potential for managing larger PV arrays, as its multi-objective frame-
work efficiently balances power extraction, mismatch loss reduction and



K. Eswaramoorthy et al.

Table 11
Comparison of switching activity for reconfiguration approaches.

Approaches Average switches/reconfiguration Estimated switches/hour
ASO 40 240
AVOA 36 216
IPDO 22 132
MOPSO 30 180
NSGA-II 26 156
MONOA 10 60

computational speed. Unlike conventional methods such as TCT, which
scale poorly with array size due to fixed interconnections, MONOA in-
tegrates adaptive mechanisms to handle the exponentially increasing
configuration possibilities in larger arrays. Its fast execution time,
demonstrated in smaller arrays, suggests scalability when extended to
larger systems, provided that computational resources are proportion-
ally allocated. Moreover, parallelization of MONOA’s operations further
enhances its capability to process high-dimensional search spaces. This
ensures that even with hundreds or thousands of PV modules, the al-
gorithm dynamically reconfigures arrays in near real-time, making it
well-suited for utility-scale solar farms under diverse shading and fault
conditions.

4. Conclusion

This study presents a dynamic PV array reconfiguration approach
utilizing MONOA to mitigate the impact of partial shading conditions.
By integrating a novel objective function that eliminates the need for
weight tuning, the proposed method enhances both the power output
and current uniformity across the PV array. Simulation resultsona 9 x 9
TCT-configured array demonstrate the superiority of MONOA compared
to other optimization techniques such as IPDO, ASO and AVOA. MONOA
consistently achieves the highest obtained power, lowest mismatch loss,
and best fill factor under both shading patterns tested. Moreover, it
demonstrates the shortest execution time, indicating its potential for
real-time applications. The enhanced performance is attributed to

Appendix
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MONOA’s balanced exploration-exploitation strategy and its ability to
maintain diversity through crowding distance and Pareto-based selec-
tion. The overall findings confirm that MONOA is not only computa-
tionally efficient but also highly effective in maximizing energy
harvesting in dynamically shaded PV systems. Therefore, it stands as a
promising candidate for smart reconfiguration in large-scale solar in-
stallations, where adaptability and optimization efficiency are critical
for sustained energy output.
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As per the TCT structure, the calculation of row currents is as follows. The first five rows exhibit identical current values, all obtained through the

same computation,

900
IRl tOIRS =9 (m) IM = 81IM

The sixth-row’s row currents are computed as,
800
Ire =9 ——= | Im=7.2]
R6 (1000) M M

The seventh, eighth and ninth row’s row currents are computed as,

Ik 1000 1000 1000

Q

(20)

(21

(22)

Using the weighted OF depicted in Fig. 8 (a), ASO algorithm evaluates row currents as follows,

For first row,

Ir

=

1000 1000 1000 1000

For second row,

Ir

[

1000 1000 1000 1000 1000

For third row,

(23)

:4< 900 )IM+ 1 ( 800 )IM+2< 600 >IM+ 1 <ﬂ)IM+ 1 <ﬂ>IM:6.2IM (24)

900 800 600 400 200
Tes =3 (1000) ha+1 (1000) u+1 (1000) a+1 <1000)IM 1 <1ooo> T =65 (25)
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For fourth row,
900 800 400 00
L“::5<1000>L"4‘1(1000)5"4‘2<1000>L"*‘1(1000>L” 6.3l
For fifth row,
900 800 600 400 200
Tes = 4(1000>L”*’2(1000>L”*’1<1000>L”4’1(1000)L”*’1<1000>L” 6.4lu

For sixth row,

900 800 400
L“"5(1000>L”4’2(1000)5"4’2<1000>L”"69L”

For seventh row,

900 600 200
Ter = 6(1000)L"4‘1(1000)5"4‘2<1000>L” 6.4l

For eighth row,

900 800 600 400
L“"5(1000>L”*’1(1000)5”*’1<1000>L"4’2<1000)L” 6-7ln

For ninth row,

900 600 200
b”"6<1000>b”4’1(1000)5“4’2<1000>L”"64L”
Using the novel OF depicted in Fig. 8 (b), ASO algorithm evaluates row currents as follows, For first row,
900 600 200
Iy = 11— Iy +1 I 11
m= 7(1000) et (1000) et (1000) w =7
For second row,
900 800 600 400
L”"4(1000>L”4’1(1000)5”4’2(1000>L”4’2(1000)L” 64lu
For third row,
900 600 400 200
L“"5<1000)L"4‘2<1000)L"*‘1(1000>L"*'1<1000)L” 6.3l
For fourth row,
900 800 600 400 200
T = 4(1000>L”*’1(1000>L”*’2<1000>L”4’2<1000)L”*’1(1000>L” 6.3lu

For fifth row,

IR5:4( 900 >1M+1<800 >1M+2( 600 )IM+2<ﬂ)IM:6.4IM

1000 1000 1000

For sixth row,

900 200
Tns = 7(1000) M‘F2(1000>L” 6.7l

Table IIT

Row currents and power output analysis for various reconfiguration algorithms

using weighted OF for pattern 1

TCT ASO

Iy, Vn(V)  Ir(A) P(W) Iy, Va(V)  Ir(A) P(W)

Ip, 5Vm 8.11Iy 40.5 Vyly Iy, 9 Vm 6.2 Iy 55.8 Vly
Iy, 5Vm 8.11Iy 40.5 Viyly Iy, 8 Vi 6.3 Iy 50.4 Vyly
IR, 5Vu 8.1 Iy 40.5 Vyly Ipy 7 Vm 6.4 Iy 44.8 Vyly
I, 5Vu 8.11Iy 40.5 Viyly Iy, 7 Vm 6.4 Iy 44.8 Vyly
I, 5Vu 8.11Iy 40.5 Vyly Ip, 7 Vm 6.4 Iy 44.8 Vyly
I, 6 Vy 7.2 1y 43.2 Vyly Ip, 4 Vy 6.5 Iy 26 Vuly
Iy, 9 Vm 3.6 Iy 32.4 Vyly Iy, 3 Vm 6.7 Iy 20.1 Vyly
I, 9 Vm 3.6 Iy 32.4 Vyly Ip, 3 Vm 6.7 Iy 20.1 Vyly
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Table III (continued)

TCT ASO
Iy, Vin(V) Ir(A) P(W) Ir, Vin(V) Ir(A) P(W)
I, 9 Vu 3.6 Iy 32.4 Vuly Ig, 1Vm 6.9 Iy 6.9 Vyly
AVOA IPDO
Iy, Vin(V) Ir(A) P(W) Ir, Vi (V) Ir(A) P(W)
I, 9 Vm 6.3 Iy 56.7 Vulm Iy, 9 Vum 6.3 I 56.7 Vuln
I, 9 Vu 6.3 Iy 56.7 Vuly Ip, 9 Vy 6.3 Iy 56.7 Vyly
Ip, 7 Vm 6.5 Iy 45.5 Vyly Iy, 7Vum 6.4 Iy 44.8 Vyly
I, 7 Vm 6.5 Iy 45.5 Vil Igy 6V 6.5 Iy 39 Vulu
I, 7 Vm 6.5 Iy 45.5 Vil Iz, 6 Vi 6.5 Iy 26.4 Vil
Iz, 4 Vy 6.6 Iy 26.4 Viyly Ig, 4 Vy 6.6 Iy 26.4 Vyly
I, 4 Vy 6.6 Iy 26.4 Vuly I, 4 Vm 6.6 Iy 26.4 Viyly
I, 4 Vy 6.6 Iy 26.4 Vyly Ip, 4 Vy 6.6 Iy 26.4 Vyly
Iy, 4 Vyu 6.6 Iy 26.4 Vil Ip, 1Vy 6.7 Iy 6.7 Vyly
MONOA
Iy, Vim(V) Iz(A) P(W)
I, 9 Vu 6.3 Iy 56.7 Viuly
Iy, 9 Vu 6.3 Iy 56.7 Vuly
I, 7 Vu 6.4 Iy 44.8 Vulu
Iy, 6 Vu 6.5 Iy 39 Vmlu
Ig, 5Vu 6.6 Iy 33 Vmlm
Ig, 5 Vu 6.6 Iy 33 Vmlm
Ig, 5Vu 6.6 Iy 33 Vulm
Ig, 5 Vu 6.6 Iy 33 Vmlu
Ip, 5 Vu 6.6 Iy 33 Vmlm
Table IV
Row currents and power output analysis for various reconfiguration algorithms
using proposed OF for pattern 1
TCT ASO
Iy, Vin(V) Ir(A) P(W) Ir Vin(V) Ir(A) P(W)
IR, 9 Vu 3.6 Iy Vulm Iz, 9 Vu 6.3 Iy 56.7 Vily
I, 9 Vu 3.6 Iy Vmlm Ig, 9 Vu 6.3 Iy 56.7 Vily
Iz, 9 Vu 3.6 Iy Vmlm Ip, 9 Vm 6.3 Iy 56.7 Vyly
I, 6 Vir 7.2 Iy Vmlm Iy, 6 Vi 6.4 Iy 38.4 Vil
Ig, 5Vu 811y Vuly Ipy 6 Vy 6.4 Iy 38.4 Vil
Iy, 5Vym 8.11Iy Vmlm I, 6 Vi 6.4 Iy 38.4 Vily
Iy, 5Vu 811y Vulm Iy, 3Vu 6.6 Iy 19.8 Vyly
I, 5 Vi 8.1 1y Viuly In, 2V 6.7 Iy 13.4 Vyly
I, 5Vu 8.1 1Iy Vulm Iy, 1Vu 7.1 Iy 7.1 Vuly
AVOA IPDO
Iy, Vin(V) Ir(A) P(W) Ir, Vin(V) Ir(A) P(W)
Iz, 9 Vu 6.4 Iy 57.6 Vuly Ig, 9 Vu 6.4 Iy 57.6 Vuly
Iy, 9 Vu 6.4 Iy 57.6 Vuly I, 9 Vu 6.4 Iy 57.6 Vulu
I, 9 Vu 6.4 Iy 57.6 Vuly Igy 9 Vy 6.4 Iy 57.6 Viuly
Ig, 6 Vi 6.5 Iy 39 Vuly Ig, IVu 6.4 Iy 57.6 Vuly
I, 6 Vi 6.5 Iy 39 Vuly Iz, IVu 6.4 Iy 57.6 Viuly
Iz, 6 Vi 650y 39 Vyly Ir, 4Vy 650y 26 Vyly
I, 3Vu 6.6 Iy 19.8 Vuly Iy, 4Vy 6.5 Iy 26 Vply
I, 3 Vu 6.6 Iy 19.8 Vulu Ip, 2 Vm 6.6 Iy 13.2 Vuly
I, 3 Vu 6.6 Iy 19.8 Vylu Iz, 1Vy 6.9 Iy 6.9 Vylu
MONOA
Ir, Vim(V) Ir(A) P(W)
Iy, 9 Vm 6.4 Iy 57.6 Vil
I, 9 Vm 6.4 Iy 57.6 Viuly
Ig, 9 Vu 6.4 Iy 57.6 Vuly
Ig, 9 Vm 6.4 Iy 57.6 Vil
Iy, 5 Vu 6.5 Iy 32.5 Vulu
Ig, 4 Vu 6.6 Iy 26.4 Vyly
Iy, 4 Vy 6.6 Iy 26.4 Vyly
Iy, 4 Vy 6.6 Iy 26.4 Vyly
Ig, 4 Vy 6.6 Iy 26.4 Vyly
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Table V

Row currents and power output analysis for various reconfiguration algorithms
using weighted OF for pattern 2

TCT ASO
Iy, Vm(V)  Ir(A) P(W) Iy, Vm(V)  Ir(A) P(W)
Ig, 9 Vm 6.3 Iy 56.7 Vulu Iy, 9 Vm 6.5 Iy 58.5 Vuly
I, 9 Vm 6.3 Iy 56.7 Vuly Ig, 9 Vm 6.5 Iy 58.5 Viuly
Ig, 7 Vu 6.6 Iy 46.2 Vyly Ig, 7 Vu 6.7 Iy 46.9 Vyly
Iy, 7 Vm 6.6 Iy 46.2 Vyly Ig, 6 Vm 6.8 Iy 40.8 Vyly
I, S5Vu 7.6 Iy 38 Vuly Iy, 5Vu 7.21y 36 Vulu
I, 5Vu 7.6 Iy 38 Vulu I, 4 Vm 7.4 Iy 29.6 Vuly
IR, 5Vu 7.6 Iy 38 Vulu Ip, 3 Vu 7.7 Iy 23.1 Vly
Iz, 2Vy 7.8 Iy 15.6 Vulu Iz, 3 Vu 7.7 In 23.1Vyly
Ig, 2Vy 7.8 Iy 15.6 Vulu Ig, 3 Vu 7.7 Iy 23.1 Vly
AVOA IPDO
Iy, Vin(V) Ir(A) P(W) Ir, Vim(V) Iz(A) P(W)
I, 9Vu 6.9Iy  621Vyly Iy 9 Vi 691y  62.1 Viyly
I, 9Vu 6.9Iy 621 Vyly I, 9 Vy 691y  62.1 Viyly
I, 9 Vm 6.9 Iy 62.1 Vyly Ipy 9 Vm 6.9 Iy 62.1 Vyly
I, 6Vy 710y 426Vuly I, 9V 6.9Iy  62.1 Viyly
Iy, 5Vu 7.2 1y 36 Vuly Ig, 9 Vm 6.9 Iy 62.1 Vyly
Ig, 7 Vu 7.3 Iu 29.2 Vuly Iy, 4 Vm 7.2 1y 28.8 Vuly
Iy, 7 Vm 7.3 Iy 29.2 Vyly Ig, 3 Vm 7.3 1y 21.9 Vyly
Iz, 7 Vu 7.3 Iy 29.2 Vuly Iy, 2Vm 7.6 Iy 15.2 Viyly
I, 7 Vm 7.3 Iy 29.2 Vyly Ig, 2 Vm 7.6 Iy 15.2 Vyly
MONOA
Iy, Vin(V) Ir(A) P(W)
I, 9 Vm 6.9 Iy 62.1 Vulm
Ig, 8 Vm 7 In 56 Vmlu
I, 8 Vm 7 In 56 Vmlm
Ig, 6 Vi 7.21Iu 43.2 Vulu
Iz, 6 Vi 7.21Iy 43.2 Viyly
Ig, 6 Vi 7.21Iy 43.2 Viyly
Ig, 6 Vi 7.21Iy 43.2 Viyly
Ig, 6 Vi 7.2 1y 43.2 Viyly
I, 1Vm 7.3 Iu 7.3 Vulm
Table VI
Row currents and power output analysis for various reconfiguration algorithms
using proposed OF for pattern 2
TCT ASO
Iy, Vm(V)  Ir(A) P(W) Iy, Vn(V)  Ir(A) P(W)
Ig, 9 Vm 6.3 Iy 56.7 Vuly Iy, 9 Vm 6.9 Iy 62.1 Vyly
I, 9 Vm 6.3 Iy 56.7 Vuly Ig, 9 Vm 6.9 Iy 62.1Vyly
I, 7 Vm 6.6 Iy 46.2 Vyly Ig, 7 Vm 7 Iy 49 Vyly
Iy, 7 Vm 6.6 Iy 46.2 Vyly Ig, 6 Vm 7.1 1y 42.6 Vyly
IR, 5Vu 7.6 Iy 38 Vuly Iry 5Vu 7.21y 36 Vulu
I, 5Vu 7.6Iy 38 Vuly Ig, 5Vu 7.21y 36 Vulu
I, S5Vu 7.6 Iy 38 Vuly Iz, 3 Vm 7.3 1y 21.9 Vly
Ig, 2Vy 7.6 Iy 15.6 Vulu Ig, 3 Vm 7.3 1y 21.9 Vyly
Iz, 2Vy 7.6 Iy 15.6 Vulu Iy, 3 Vm 7.3 1y 21.9 Vyly
AVOA IPDO
Ir, Vn(V)  Ir(A) P(W) Iy, Va(V)  Ir(A) P(W)
Iy, 9 Vm 7 Iy 63 Vuly Iy, 9 Vm 7 Iv 63 Vuly
Ig, 9 Vu 7 In 63 Vulm Ip, 9 Vu 7 In 63 Vulu
Iy, 9 Vm 7 In 63 Vuly Ig, 9 Vm 7 Iv 63 Vyly
Ig, 6 Vy 7.1 1y 42.6 Vyly Iy, 6 Vu 7.21y 43.2 Vyly
Iy, 6 Vu 7.1 In 42.6 Vuly Ig, 6 Vi 7.21Iu 43.2 Vulm
I, 4Vy 72Ly  288Vuly I, 6V 721y 43.2 Vyly
Ig, 4 Vu 7.2 Iy 28.8 Vuly Ip, 6 Vi 7.21Iu 43.2 Vulu
I, 2 Vi 7.3 1y 14.6 Vuly Iy, 6 Vi 720y 43.2 Vyly
Ig, 2Vy 7.3 Iy 14.6 Vuly Ip, 6 Vu 7.21y 43.2 Vyly
MONOA
Iy, Vin(V) Ir(A) P(W)
Iz, 9 Vy 7 Iy 63 Vily

13
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Table VI (continued)

MONOA
Iy, Vin(V) Ir(A) P(W)
Ig, 9 Vm 7 In 63 Vuly
IR, 9 Vm 7 In 63 Vuly
Ig, 6 Vi 7.2 1y 43.2 Vylu
I, 6 Vu 7.2 1y 43.2 Vulu
I, 6 Vi 7.2 Iy 43.2 Vyly
Ig, 6 Vy 7.2 Iy 43.2 Vyly
Iy, 6 Vu 7.21Iu 43.2 Vulu
I, 6 Vu 7.2 Iy 43.2 Vulu
For seventh row,
900 800 400 200
Ly=4(—— )1 In+1 In+1 I I
® 4(1000) M+3<1000) et (1000) et <1000) =660y
For eighth row,
900 800 600 200
Is=5 In+1 Ii+1 Iy+2 Iy =6.3I,
RS (1000) mt (1000) et (1000) mt <1ooo) m =063l
For the ninth row,
900 800 600 400 200
Ino=4 Iy+2 In+1 In+1 In+1 Iy=6.4
R (1000) mt (1000) mt (1000) mt <1000) mt <1ooo> MR

Using the weighted OF depicted in Fig. 8 (a), MONOA algorithm evaluates row currents as follows,

For first row,

:6( 9°°>1M+1(6°°>1M+1(4°° )1M+1<2°° )1M 6,61

Ir

=

1000 1000 1000 1000
For second row,

900 600 400
T = 5(1000) M 2(1000)1 +2<1000>IM 650

For third row,

900 600 400 200
Ies =5 (1000) ha+2 (1000) B +1 <1ooo> B +1 (1000)1”’ 6-3lu

For fourth row,

900 800 200
IR476(1000>IM+1<1OOO>IM+2(1OOO>IM76.61M

For fifth row,
900 800 600 200
Ies =2 (1000) m+S (1000) By +1 (1000)1’" +1 <1000)IM 6.61u
For sixth row,
900 600 400 200
T =6 (1000) he+1 (1000) he+1 (1000>IM 1 <1000)IM 6.6ln

For seventh row,

900 800 400 200
7 =5 (1000) fut1 (1000) T +2 (1000)1"” +1 <1000)IM 6.3l

For eighth row,

900 800 200
Irs =6 (1000)1”’ +1 (1000) B +2 (1000)1’" 6.6l

For ninth row,

1R9:4(900>1M+1<800>1M+2<600)1M+2<400)1M 6.41,

1000 1000 1000 1000

Using the novel OF depicted in Fig. 8 (b), MONOA algorithm evaluates row currents as follows,

For first row,

1R1:4( 9OO>1M+2(800>1M+2(600 >1M+1(200 )IM 6.6y

1000 1000 1000 1000
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For second row,

900 600 400 200
Ta=6 (1000)1’“ 1 (1000)1’“ 1 (1000)1’” 1 (1000)1M = 6.6l

For third row,

900 600 400 200
Ins 76(1000)IM+1(1000)IM+1 (1000)1M+1 (—1000)1M76.6IM

For fourth row,

Irs :4( 900 )IM+2( 800 )IM+ 1 ( 600 )IM+ 1 (ﬂ)IM+l (@)IM:GAIM

1000 1000 1000 1000 1000

For fifth row,
900 400 200
ls =6 (1000)IM +2 (1000) ha+1 (1000) T =641

For sixth row,

1000 1000 1000 1000 1000

Ire :4< 900 )IM+2( 800 )IM-i- 1 ( 600 )IM-',- 1 (ﬂ)IM—F 1 ( 200 )IM:6.4IM

For seventh row,

900 800 600 400 200
Ty =3 (1000)1M 1 (1000)1M 1 (1000)1’” 1 (1000)1M 1 (1000)1M = 6.5l

For eighth row,

900 600 400 200
Tes =6 (1000)1’” +1 (1000) By +1 (1000) fut1 (M) Ty =6.6lu

For ninth row,

900 800 600 400 200
Teo =4 <1000> B +2 (1000) het1 (1000) het1 (ﬁ) hat1 (ﬁ) fr = 6.4y
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(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)

The row current values for ASO, AVOA, IPDO and MONOA are computed for pattern 1 and presented in Table 3 and Table 4, with corresponding
values for pattern 2 listed in Table 5 and Table 6. Results show that algorithms using the novel OF consistently achieve higher power output across
both shading patterns. For instance, PSO improves to 56.7 and 62.1 Vy, from 55.8 to 58.5 Vy I, using the novel function. Similarly, AVOA, IPDO, and
MONOA show power gains up to 57.6 and 63 VyIy. These improvements confirm that the novel OF enhances algorithm performance by guiding
efficient exploration without the need for weight tuning, making it well-suited for PV array reconfiguration.
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