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A B S T R A C T

Photovoltaic (PV) array performance is notably affected by Partial Shading Conditions (PSCs) by causing 
mismatch losses, reducing energy output, and compromising system reliability. The proposed study outlines a 
dynamic reconfiguration strategy for PV arrays under PSC using the Multi-Objective Nutcracker Optimization 
Algorithm (MONOA). MONOA is a recently developed bio-inspired metaheuristic designed for multi-objective 
optimization problems. It integrates fast opposition-based learning, crowding distance and non-dominated 
sorting to effectively search for optimal PV switching configurations that maximize output power and mini
mize current imbalance and switching activity. A Total Cross-Tied (TCT) based 9 × 9 PV array is used as test 
system, and a novel Objective Function (OF) is proposed for enhancing solution quality without requiring weight 
tuning. The performance of MONOA is compared against well-established algorithms such as Improved Prairie 
Dog Optimization (IPDO), Atom Search Optimization (ASO), and African Vultures Optimization Algorithm 
(AVOA) under two different shading patterns. Simulation results demonstrate that MONOA consistently achieves 
higher power output, better fill factor, lower mismatch loss, and the fastest execution time among all tested 
methods.

1. Introduction

Studies conducted in recent years have prioritized enhancing 
maximal power harvesting from PV systems during fluctuating irradia
tion and temperature changes. Enhancing the power generation effi
ciency elevates the PV plant operational performance and reduces unit 
cost of generated power [1,2]. Solar PV is a preferred renewable source 
due to its abundant availability and year-round accessibility, even in 
remote and off-grid locations. Furthermore, it stands out for its afford
able installation, convenient transportation and pollution-free operation 
[3,4]. Despite their efficiency, PV systems encounter electrical and 
physical problems, including shaded faults, converter switch faults, 
open circuit faults, line-to-line faults, hot spots and arc faults. At the 
same time, mismatch effects are a common issue in PV systems, leading 
to a drop in power generation efficiency due to module cracking or 
inconsistent radiation exposure across the array [5,6]. This effect, when 
present in PV arrays, results in significant power degradation, defined as 
discrepancy among the peak potential array power and aggregate 

maximum power of its modules [7]. When the radiation level varies 
across different sections of a PV array, despite consistent solar energy 
input per square meter, it leads to a condition known as partial shading. 
The shading conditions affecting PV systems are generally divided into 
static and dynamic types. The former is caused due to transient factors 
like clouds, leaves, dust and birds sitting on the panels, while the latter is 
caused by permanent features such as buildings and trees [8,9]. Fig. 1
clearly illustrates the PSC impact on Maximum Power Point (MPP).

In addition to performance degradation, PSC poses a threat to the 
integrity of PV system components, causing diode failures in the form of 
open or short circuits. Hence, when PSC affects a string, bypass diodes 
isolate underperforming modules by short-circuiting them [10]. To 
overcome MPPT challenges under partial shading, both passive and 
active solutions have been proposed. Passive methods, including bypass 
diodes and configurations like Series-Parallel (SP), Bridge-Link (BL), 
Honeycomb and Total-Cross-Tied (TCT) aim to reduce shading effects. 
Among these configurations, which are represented in Fig. 2, the TCT 
arrangement has demonstrated superior effectiveness in maximizing 
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output under PSCs [11].
Active techniques to mitigate PSC in PV systems are broadly cate

gorized into three main approaches, where each offers distinct benefits 
and limitations. One method involves the use of multi-tracker con
verters, which allow different sections of the PV array to operate at their 
respective MPPs, thereby improving overall efficiency under uneven 

irradiance [12]. Another technique employs micro converters, where 
each panel or a small group of panels is equipped with its own power 
converter, enhancing granularity in control and power optimization. 
The third approach focuses on reconfiguring PV arrays to adapt to 
shading patterns, ensuring more uniform power generation and mini
mizing mismatch losses [13,14]. Generally, PV module reconfiguration 
techniques are divided into static and dynamic types. Dynamic ap
proaches, including Electrical Array Reconfiguration (EAR), involve 
actively modifying the electrical configuration of modules to optimize 
performance under partial shading conditions. Static approaches 
maintain a constant electrical setup and involve only the physical 
rearrangement of modules [15]. Compared to static methods, dynamic 
approaches enhance the operational efficiency of PV systems, especially 
under PSCs. Unlike static techniques, which involve fixed physical 
rearrangement of modules, dynamic reconfiguration adjusts electrical 
connections in real time without altering the physical layout. This 
adaptability allows for optimal power extraction by minimizing 
mismatch losses and maintaining high efficiency as shading patterns 
change. Additionally, dynamic systems are easier to automate, require 
less maintenance, and eliminate the need for manual intervention, 
making them more suitable for large-scale and smart PV systems [16,
17].

However, existing dynamic reconfiguration approaches for PV sys
tems under partial shading conditions face certain limitations that affect 

Fig. 1. MPP behaviour analysis in the presence of PSC.

Fig. 2. Different PV module interconnection configurations (a) SP (b) BL (c) TCT and (d) Honeycomb.
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their efficiency and practicality. Many methods rely on heuristic or 
single-objective optimization techniques, which often prioritize maxi
mizing power extraction but neglect important aspects such as switching 
activity, execution time, or mismatch current reduction, leading to 
suboptimal long-term performance [18]. Some algorithms, such as 
traditional swarm-based or evolutionary approaches, suffer from slow 
convergence, high computational demand and susceptibility to local 
optima, which makes them less suitable for real-time implementation 
[19]. Moreover, several strategies require frequent and large-scale 
switching of array interconnections, resulting in increased hardware 
wear, higher control complexity, and added energy losses during tran
sitions. Another major issue is the dependence on weight-based objec
tive functions, where improper weight selection can bias the 
optimization and reduce robustness across different shading scenarios. 
Finally, scalability remains a challenge, as many existing methods 
struggle to maintain efficiency and low computational cost when 
applied to large-scale PV arrays, limiting their deployment in 
utility-level solar farms [20,21]. A summary of research works on dy
namic reconfiguration of PV modules, along with their pros and cons, is 
provided in Table 1.

In this research. MONOA is implemented for the dynamic reconfi
guration of PV array under PSC. This technique maximizes the power 
output, minimizes the number of switching actions in addition to 
reducing component wear and reconfiguration frequency. With the 
incorporation of multi-objective framework, MONOA offers a more 
holistic and practical solution. It also promotes long-term PV system 
efficiency and durability. The adaptive nature of the optimization al
gorithm enables better responsiveness to variable shading patterns.

2. System modelling

2.1. PV module modelling

Modelling of PV cell is imperative in its design process as it ulti
mately contributes to the heightened efficiency of the entire PV system. 
PV cells, when accurately modelled, effectively replicate the actual 
performance of a PV system. Nevertheless, the development of such 
model is difficult due to the inherent non-linearity of the cells. Conse
quently, significant efforts have been devoted by several researchers for 
developing an accurate PV model that enhances plant efficiency. These 
efforts involve comprehensive analysis and range of optimization tech
niques that has led to the evolution of primary diode-based PV models. 
Due to fewer parameters, simpler design and ease of implementation, 
the single-diode PV model is generally chosen over the other two 
models. Fig. 3 provides the PV model electric circuit diagram, encom
passing a current source IPV , which is coupled counter parallel to diode 
D1. Here, KCL is used for evaluating the produced model current, 

I= IPV − ID1 − IP (1) 

In the above equation, IPV specifies PV source current, ID1 is diode 
current and IP current across shunt resistance Rp. With the substitution of 
ID1 and IP in Equation (1), 

I= IPV − I01

(

exp
(

VD1

a1Vt
− 1

))

−

(
V + IRs

Rp

)

(2) 

In this equation, the thermal voltage is specified as Vt and is 
computed using the expression NskT

q , where the Boltzmann constant is 
specified as k. Moreover, the term I01 specifies diode leakage current, a1 

is the Ideality factor, Ns is count of series coupled cells and q is the 
electric charge of an electron. Given the strong influence of environ
mental condition on PV output, the generated current is mathematically 
defined as, 

IPV =

(
G
G0

)

[Isc + ki(T − T0)] (3) 

In this context, Isc is the current measured when the terminals are 
shorted under standard test conditions (STC). Moreover, T and G are the 
actual temperature and irradiation values, respectively. Similarly, the 
value of T0 = 25◦C and G0 = 1000W/m2. The current coefficient factor 

Table 1 
Evaluation of dynamic PV reconfiguration strategies.

Ref Technique Strongpoints Shortcomings

[22] Fuzzy logic Ensures rapid and 
accurate selection of 
optimal configurations, 
which are suitable for 
systems of various 
capacities.

Relying on short-circuit 
current for radiation 
estimation proves to be 
both complex and 
economically 
demanding.

[23] Neuro-fuzzy 
algorithm

It is a fully automatic, 
online method that 
enhances PV array 
performance under PSC 
without requiring 
auxiliary modules.

Its reliance on global 
measurements limits 
detailed analysis of 
localized faults.

[24] Improved Pelican 
Optimization 
algorithm

It simultaneously 
optimizes power output 
and minimizes 
switching actions.

The method optimizes 
one column at a time, 
which lead to local 
optima rather than a 
global best 
configuration.

[25] Evolutionary based 
Pareto optimization 
algorithm

Minimizes the number 
of switch operations 
and comprises of 
multiple 
reconfiguration 
schemes.

Ineptness in handling 
fast-changing shading 
patterns.

[26] Square Dynamic 
Reconfiguration 
(SDR)

This quadrant-based 
approach offers simple 
and structured design 
with low hardware 
complexity.

The fixed quadrant logic 
of this technique is its 
major shortcoming.

[27] Genetic Algorithm 
(GA)

It provides improved 
power output and is 
capable of handling 
regular and irregular 
configurations.

The problem of 
premature convergence 
is its major limitation.

[28] JAYA algorithm It is a simple technique 
with low computational 
burden and improved 
power output.

It only considers power 
output and does not 
optimize switch count 
or system wear.

[29] Improved Prairie 
Dog Optimization 
(IPDO)

The algorithm performs 
well on large arrays.

Cell-level switching is 
highly granular and 
demands a very 
complex switching 
matrix.

[30] Atom Search 
Optimization (ASO)

This technique has fast 
execution time and 
significantly reduces 
mismatch losses.

It does not focus on 
minimizing switching 
actions.

[31] African Vultures 
Optimization 
Algorithm (AVOA)

It offers high power 
enhancement with 
reduced power losses.

It does not minimize 
switching activity, 
component aging or 
reconfiguration 
frequency.

Fig. 3. Single diode electric circuit.
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is specified as ki.

2.2. TCT topology for PV arrays

TCT is widely recognized as an effective connection strategy to meet 
power requirements. Research findings confirm its enhanced perfor
mance over BL, HC and SP connection methods. A TCT connection is 
created by linking each row of an SP layout using crossties. To demon
strate, a 9 × 9 TCT PV array is used, as seen in Fig. 4.

The configuration encompasses nine columns and nine rows. The 
voltage and current in a TCT-connected system are determined as, 

Varray =
∑9

m=1
VMm (4) 

IRm =
∑9

n=1

(
Gmn

Gs
IMmn

)

,m= 1,2, 3,…,9 (5) 

In this equation, IRm is the generated current in row m, Varray is the 
total terminal voltage, while IMmn and VMmn correspond to module current 

and voltage in row x at STC 
(

Gs = 1000 W
m2

)

, respectively. To maximize 

the PV array power output, shading is required to be consistently and 
evenly distributed across the entire module surface. The TCT arrange
ment fails to achieve a uniform distribution under PSC. In addition, the 
TCT configuration demands a substantial switch count, calculated as 2×
M × (M+1) − 2 + 2 × N × (M×N − M) with N and M indicating the total 
count of columns and rows in array.

Motivated by the need for simplicity and flexibility, a meta-heuristic 
optimization-based approach is proposed to identify the optimal 
switching matrix interconnection as shown in Fig. 5.

2.3. Formulation of objective function (OF)

Establishing OF is a fundamental requirement, in order to maximize 
power output under uniformly distributed shading, a novel OF is pro
posed. This function is defined as the ratio of the total power produced 
by the PV array to the absolute error between the maximum and mini
mum row currents, and is formulated as follows, 

Maximize(obj(i))=
Arraypower

|Imax − Imin|+ ∈
(6) 

In this equation, the i-th element fitness value is represented as obj(i), 
∈ is a positive constant preventing singularity without significantly 
altering the optimization process. This ensures numerical stability and 

avoids abrupt changes in the objective function when current imbalance 
is minimal. Additionally, under conditions where Imax ≈ Imin, the system 
is already well-balanced with negligible mismatch losses, meaning that 
maximizing array power naturally dominates the optimization. In the 
row current vector I = [I1,I2,I3,…,I9], Imin and Imax indicate the lowest and 
highest current values, respectively. The total array output power is, 

Arraypower =
∑X

m=1
IRm × Vm (7) 

The core objective is to enhance power output while reducing the 
difference between the highest and lowest row currents, thereby main
taining a uniform shading pattern on the PV surface.

2.4. Dynamic reconfiguration using MONOA

MONOA is a recently developed nature-inspired metaheuristic 
designed for multi-objective optimization problems, and it has been 
adapted here for PV array reconfiguration under PSC. It builds upon the 
Nutcracker Optimization Algorithm (NOA), a single-objective optimizer 
inspired by the foraging and caching behaviour of nutcracker birds. In 
NOA’s metaphor, each candidate solution is a nutcracker bird, and the 
algorithmic operators mimic the bird’s strategies for gathering seeds and 
storing them for future use. MONOA extends NOA by incorporating 
three key enhancements to handle multiple objectives: an opposite- 
learning strategy for initialization, a fast Non-Dominated Sorting 
(NDS) approach, and a crowding distance mechanism for Pareto-optimal 
selection. These additions ensure that MONOA evolves a diverse set of 
non-dominated solutions and converge toward the Pareto front of the 
multi-objective problem. In the context of PV reconfiguration, each 
nutcracker agent’s position encodes a particular wiring configuration. 
The algorithm iteratively updates these positions through a series of 
exploration and exploitation phases named after the bird’s behaviours: 
foraging, storage, cache-search and recovery, each governed by specific 
mathematical update rules. Through these phases, MONOA alternates 
between exploring new configurations and exploiting knowledge of the 
best-found configurations, all while evaluating solutions on multiple 
objectives and using Pareto-based criteria to guide the search toward an 
optimal reconfiguration. Fig. 6 indicates the flowchart of MONOA for 
dynamic reconfiguration of PV arrays. The algorithm starts with an 
opposition-based population initialization, where for each randomly 
initialized position Xi,j(0), its opposite is generated as, 

Xopp
ij (0)= Lj + Uj − Xi,j(0) (8) 

Fig. 4. PV module behaviour in a TCT-connected 9 × 9 solar array.
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Where, Lj and Uj are the lower and upper bounds of the j-th dimension. 
During the foraging phase, an agent updates its position based on pop
ulation mean and random influences as, 

Xt+1
i,j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Xt
m,j + γ

(
Xt

A,j − Xt
B,j

)
+ μr2

(
Uj − Lj

)
, ifτ1 < τ2andt ≤

Tmax

2

Xt
C,j + μ

(
Xt

A,j − Xt
B,j

)
μ⋅1(r1 < δ)⋅r2

(
Uj − Lj

)
, ifτ1 < τ2andt >

Tmax

2
Xt

i,j, otherwise

(9) 

Where, XA,XB,XC are randomly selected agents, Xm is the mean position, 
γ is a Lévy-distributed step and μ is the switching coefficient selected as, 

μ=

⎧
⎨

⎩

τ3, r1 < r2
τ4, r2 < r3

τ5, otherwise
(10) 

With τ3, τ4, τ5 as random values drawn from predefined distributions. 
The storage phase moves the solution towards the best found so far, 

Xt+1
i,j =Xt

i + l ⋅ γʹ⋅
(
Xt

best − Xt
i
)

(11) 

Where, l = 1 − t
Tmax 

linearly decreases over time and γʹ is a Lévy step. In 
the cache-search phase, the agent generates two reference points, RP1 
and RP2. If θ = π

2, RP1 is calculated as, 

RP1t
i =Xt

i +α cos(θ)
(
Xt

A − Xt
B
)
+ αRP (12) 

and otherwise as, 

Fig. 5. Adaptive PV reconfiguration using switching patterns for optimal switching matrix interconnection.

Fig. 6. Flowchart of MONOA for dynamic reconfiguration of PV arrays.
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RP1t
i =Xt

i + α
(
Xt

A − Xt
B
)
+ αRP (13) 

RP2 is similarly generated using, 

RP2t
i =Xt

i + α(U − L) (14) 

The convergence control parameter α is defined as, 

α=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(

1 −
t

Tmax

)λ

, r1 > r2

(
t

Tmax

)λ

, otherwise

(15) 

The agent then updates its position toward RP1 using, 

Xt+1
i =Xt

i + χ
(
RP1t

i − Xt
i
)

(16) 

If the solution does not improve, the agent performs the recovery 
phase, where the position is updated using RP2 and the best-known 
solution, 

Xt+1
i,j =Xt

best,j + ρ1

(
RPj − Xt

best,j

)
+ ρ2

(
Ct

j − RPj

)
(17) 

Alternatively, 

Xt+1
i =Xt

i + χʹ( RP2t
i − Xt

i
)

(18) 

MONOA also employs fast non-dominated sorting to classify solu
tions based on Pareto dominance, and crowding distance to maintain 
solution diversity, 

CDi =
∑M

j=1

fj(i + 1) − fj(i − 1)
fmax
j − fmin

j
(19) 

Where, fj is the j-th objective and M is the number of objectives.
Table 2 lists out the parameters of MONOA which are tuned using 

Cross-validation. This involves systematically testing different param
eter settings across multiple partial shading scenarios to identify values 
that deliver consistently good performance rather than optimizing for a 
single case. In practice, the dataset of shading patterns is divided into 
training and validation subsets: the training set is used to run MONOA 
with various combinations of population size, iteration limits and con
trol parameters, while the validation set evaluates how well these tuned 
settings generalize to unseen conditions. Performance metrics such as 
obtained power, mismatch loss, fill factor and execution time are 
compared across folds and the parameter set that yields stable results 
with minimal variance is selected. This approach prevents overfitting of 
parameters to specific shading patterns and promotes that MONOA re
mains robust across a wide range of real-world operating conditions. 
Moreover, cross-validation provides insights into parameter sensitivity, 
helping designers strike a balance between computational efficiency and 
optimization accuracy, which is especially critical for real-time PV array 
reconfiguration.

The algorithm selects solutions with lower ranks and higher 
crowding distances. By iteratively applying these exploration and 
exploitation mechanisms, MONOA identifies an optimal or near-optimal 
set of PV module interconnections that maximize output power while 
minimizing current imbalance and switch usage. This strategy promotes 
robust PV performance in dynamically shaded environments with min
imal loss and high adaptability.

3. Results and discussion

In the first phase, the proposed MONOA is evaluated and compared 
with three contemporary optimization techniques: IPDO, AVOA and 
ASO. All three algorithms are implemented using the multi-objective 
fitness function designed for PV array reconfiguration under PSCs. 
This function aims to enhance the total power output of the array while 
minimizing current deviations across the rows. The goal of this com
parison is to assess the effectiveness of MONOA in optimizing the 
switching configuration of the PV array and maintaining current uni
formity, which is essential for mitigating mismatch losses. The second 
phase involves a comprehensive performance analysis using multiple 
evaluation metrics. These metrics help determine the consistency, effi
ciency, and robustness of MONOA when compared to IPDO, AVOA and 
ASO across different shading scenarios. The simulations are conducted 
on a 9 × 9 PV array configured in a TCT topology. Each algorithm is 
executed for 30 independent runs, with a population size of 20 and 100 
iterations per run. The simulation environment is set up on MATLAB. 
The electrical parameters of the PV module are: Short-Circuit Current =
5.2 A and Open-Circuit Voltage = 44.2 V.

To analyse the effectiveness of the proposed OF, this section presents 
a comparative evaluation of algorithm performance using both the 
conventional weighted OF and the newly formulated one. The analysis is 
conducted using a 9 × 9 PV array subjected to two types of PSCs, which 
are the short broad (pattern 1) and long broad (pattern 2) shading, 

• Pattern 1 involves different sunlight levels across the array: 900, 800, 
600, 400, and 200 W/m2.

• Pattern 2 has the first six columns fully illuminated (900 W/m2), 
while the others receive reduced irradiance of 800, 700, 400, and 
300 W/m2.

Fig. 7 (a) and 7 (b) and 8 (a), 8 (b) show the TCT-connected shaded 
PV array and the reconfigured layouts generated depending on both the 
traditional weighted objective function and the proposed one, for 
pattern 1 and pattern 2, respectively. The related values of current, 
voltage, and power are calculated and listed in Tables 3–6 for each 
pattern (appendix). The methodology used to compute the row-wise 
current, voltage, and power for pattern 1, as shown in Figs. 7 and 8, is 
detailed in the appendix section.

Figs. 9 and 10 illustrate the I–V and P–V characteristics of the pro
posed MONOA algorithm in comparison with IPDO, AVOA, ASO and the 
traditional TCT configuration under shading patterns 1 and 2. In both 
cases, the TCT method demonstrates significantly lower performance, 
with multiple power peaks, sharp drops in current and clear mismatch 
losses due to partial shading. In contrast, MONOA consistently delivers 
the highest and most stable power output, indicating effective PV array 
reconfiguration and strong mitigation of current mismatches.

Table 7 presents the performance of various PV array reconfiguration 
algorithms in terms of power extraction and mismatch loss under two 
partial shading patterns. For both patterns, the traditional TCT config
uration shows the lowest obtained power output and the highest 
mismatch loss, confirming its limited ability to handle mismatch effects. 
Among the metaheuristic algorithms, MONOA consistently demon
strates superior performance.

Table 8 presents the fill factor values for five PV reconfiguration 
methods under shading patterns 1 and 2. The results show that the 
traditional TCT method yields the lowest fill factor in both scenarios, 
with values of 0.495 and 0.681 for patterns 1 and 2, respectively; indi
cating poor efficiency and high mismatch losses. In contrast, all 
metaheuristic-based methods demonstrate significantly improved fill 
factors, reflecting enhanced power extraction and better utilization of 
the PV array. Among the algorithms, MONOA consistently achieves the 
highest fill factors.

Table 9 presents the mean execution times of various optimization 
algorithms used for PV array reconfiguration under shading patterns 1 

Table 2 
Parameters of MONOA.

Parameters Values

Population size 50
Maximum iterations 100
Learning coefficient 0.5-1.0
Influence factor 0.1-0.9
Threshold probability [0,1]

K. Eswaramoorthy et al.                                                                                                                                                                                                                       Renewable Energy 257 (2026) 124754 

6 



and 2. The results indicate that MONOA is the most computationally 
efficient approach, recording the lowest execution times of 0.3 s for 
pattern 1 and 0.32 s for pattern 2.

Table 10 summarizes the performance of the proposed MONOA al
gorithm under different operating conditions ranging from no shading to 
severe partial shading. In the absence of shading, MONOA is able to 
extract the full global peak of 14,617.349 W with zero mismatch loss, a 
high fill factor of 0.85 and the fastest execution time of 0.28 s, con
firming its ability to fully utilize array capacity under ideal conditions. 
Under mild shading, the obtained power drops slightly to 13,137.476 W 
with a mismatch loss of 1479.873 W, while maintaining a high fill factor 
of 0.83 and similar execution time of 0.29 s. In the moderate shading 
scenario, power extraction reduces further to 11,657.603 W with a 
mismatch loss of 2959.746 W and a fill factor of 0.812, highlighting the 
growing effect of mismatch losses; execution time remains within 0.32 s, 
showing the algorithm’s consistency in convergence speed. Under se
vere shading, MONOA still delivers 10,521.470 W while limiting 
mismatch loss to 4095.879 W and maintaining a reasonable fill factor of 

0.792, again with a rapid convergence time of 0.32 s.
Table 11 presents the comparison of switching activity across 

different PV array reconfiguration approaches. The results indicate that 
traditional metaheuristic methods such as ASO and AVOA involve 
relatively high switching activity, requiring 40 and 36 switch operations 
per reconfiguration, respectively, which scale up to 240 and 216 
switches per hour if six reconfigurations occur per hour. MOPSO and 
NSGA-II show moderate switching requirements, averaging 30 and 26 
operations per reconfiguration, corresponding to 180 and 156 per hour. 
IPDO further reduces the switching activity to 22 per reconfiguration, 
reflecting better efficiency in minimizing unnecessary rewirings. In 
contrast, the proposed MONOA achieves the lowest switching activity, 
requiring only 10 switches per reconfiguration, which corresponds to 60 
switches per hour representing a significant reduction of approximately 
75 % compared to ASO. This reduction highlights MONOA’s capability 
to balance power extraction with minimal switching overhead, leading 
to lower hardware stress, extended switch lifespan, and improved sys
tem reliability.

Fig. 7. Shading pattern distribution in PV array configurations optimized by different algorithms under pattern 1(a) Weighted OF and (b) proposed OF.

K. Eswaramoorthy et al.                                                                                                                                                                                                                       Renewable Energy 257 (2026) 124754 

7 



3.1. Real-time applicability of the concept

For real-time implementation of the proposed MONOA-based dy
namic reconfiguration strategy, several prerequisites and considerations 
must be addressed to ensure practical applicability. First, fast and reli
able measurement of PV array parameters such as voltage, current and 
irradiance is essential, requiring accurate sensors and efficient data 
acquisition systems. The algorithm itself must exhibit low 

computational complexity and rapid convergence, as real-time reconfi
guration demands decisions within milliseconds to seconds to track fast- 
changing shading patterns. Hardware platforms should be capable of 
supporting parallel processing and handling the switching operations 
without introducing delays or excessive energy overhead. Furthermore, 
robustness against measurement noise, communication delays and 
hardware switching constraints must be ensured to maintain stability 
and accuracy. System-level considerations, including scalability for 

Fig. 8. Shading pattern distribution in PV array configurations optimized by different algorithms under pattern 2 (a) Weighted OF and (b) proposed OF.
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large PV arrays, minimization of switching frequency to avoid wear on 
relays or power electronics and integration with existing MPPT units, 
are also critical. Overall, achieving real-time applicability requires 
balancing computational efficiency, hardware compatibility and oper
ational reliability to ensure the algorithm transitions effectively from 
simulation to field deployment.

The proposed MONOA-based reconfiguration concept shows strong 
potential for managing larger PV arrays, as its multi-objective frame
work efficiently balances power extraction, mismatch loss reduction and 

Fig. 9. Performance comparison assessment in pattern 1 for algorithms using I-V and P-V characteristics.

Fig. 10. Performance comparison assessment in pattern 2 for algorithms using I-V and P-V characteristics.

Table 7 
Performance analysis of PV reconfiguration methods based on power extraction and mismatch loss.

Approach Pattern 1 Pattern 2

Real GP (W) Obtained GP (W) Mismatch Loss (W) Real GP (W) Obtained GP (W) Mismatch Loss (W)

TCT 14617.349 8168.949 6448.400 14617.349 10798.578 3818.771
ASO 14617.349 10417.625 4199.724 14617.349 11503.609 3113.740
AVOA 14617.349 10521.470 4095.879 14617.349 11549.155 3068.194
IPDO 14617.349 10484.241 4133.108 14617.349 11556.603 3060.746
MOPSO 14617.349 10500.000 4117.349 14617.349 11600.000 3017.349
NSGA-II 14617.349 10510.000 4107.349 14617.349 11620.000 2959.349
MONOA 14617.349 10521.470 4095.879 14617.349 11657.603 2959.746

Table 8 
Performance analysis of PV reconfiguration methods based on Fill factor.

AVOA 0.782 0.778
IPDO 0.750 0.787
MOPSO 0.785 0.795
NSGA-II 0.789 0.801
MONOA 0.792 0.812

Table 9 
Performance analysis of PV reconfiguration methods based on mean execution 
time.

Approach Pattern 1 Pattern 2

ASO 1.2s 1.18s
AVOA 1.11s 1.14s
IPDO 0.42s 0.43s
MOPSO 0.65s 0.67s
NSGA-II 0.72s 0.74s
MONOA 0.3s 0.32s

Table 10 
Performance analysis of MONOA under varying conditions.

Conditions Real GP 
(W)

Obtained 
GP (W)

Mismatch 
loss (W)

Fill 
factor

Execution 
time (s)

No shading 14,617.349 14,617.349 0.000 0.850 0.28
Mild 

shading
14,617.349 13,137.476 1479.873 0.830 0.29

Moderate 
shading

14,617.349 11,657.603 2,9559.746 0.812 0.32

Severe 
shading

14,617.349 10,521.470 4095.879 0.792 0.32
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computational speed. Unlike conventional methods such as TCT, which 
scale poorly with array size due to fixed interconnections, MONOA in
tegrates adaptive mechanisms to handle the exponentially increasing 
configuration possibilities in larger arrays. Its fast execution time, 
demonstrated in smaller arrays, suggests scalability when extended to 
larger systems, provided that computational resources are proportion
ally allocated. Moreover, parallelization of MONOA’s operations further 
enhances its capability to process high-dimensional search spaces. This 
ensures that even with hundreds or thousands of PV modules, the al
gorithm dynamically reconfigures arrays in near real-time, making it 
well-suited for utility-scale solar farms under diverse shading and fault 
conditions.

4. Conclusion

This study presents a dynamic PV array reconfiguration approach 
utilizing MONOA to mitigate the impact of partial shading conditions. 
By integrating a novel objective function that eliminates the need for 
weight tuning, the proposed method enhances both the power output 
and current uniformity across the PV array. Simulation results on a 9 × 9 
TCT-configured array demonstrate the superiority of MONOA compared 
to other optimization techniques such as IPDO, ASO and AVOA. MONOA 
consistently achieves the highest obtained power, lowest mismatch loss, 
and best fill factor under both shading patterns tested. Moreover, it 
demonstrates the shortest execution time, indicating its potential for 
real-time applications. The enhanced performance is attributed to 

MONOA’s balanced exploration-exploitation strategy and its ability to 
maintain diversity through crowding distance and Pareto-based selec
tion. The overall findings confirm that MONOA is not only computa
tionally efficient but also highly effective in maximizing energy 
harvesting in dynamically shaded PV systems. Therefore, it stands as a 
promising candidate for smart reconfiguration in large-scale solar in
stallations, where adaptability and optimization efficiency are critical 
for sustained energy output.
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Appendix 

As per the TCT structure, the calculation of row currents is as follows. The first five rows exhibit identical current values, all obtained through the 
same computation, 

IR1toIR5 =9
(

900
1000

)

IM =8.1IM (20) 

The sixth-row’s row currents are computed as, 

IR6 =9
(

800
1000

)

IM =7.2IM (21) 

The seventh, eighth and ninth row’s row currents are computed as, 

IR7 = IR8 = IR9 =3
(

600
1000

)

IM +3
(

400
1000

)

IM +3
(

200
1000

)

IM =3.6IM (22) 

Using the weighted OF depicted in Fig. 8 (a), ASO algorithm evaluates row currents as follows,
For first row, 

IR1 =5
(

900
1000

)

IM +1
(

800
1000

)

IM +2
(

600
1000

)

IM +1
(

200
1000

)

IM =6.7IM (23) 

For second row, 

IR2 =4
(

900
1000

)

IM +1
(

800
1000

)

IM +2
(

600
1000

)

IM +1
(

400
1000

)

IM +1
(

200
1000

)

IM =6.2IM (24) 

For third row, 

IR3 =5
(

900
1000

)

IM +1
(

800
1000

)

IM +1
(

600
1000

)

IM +1
(

400
1000

)

IM +1
(

200
1000

)

IM =6.5IM (25) 

Table 11 
Comparison of switching activity for reconfiguration approaches.

Approaches Average switches/reconfiguration Estimated switches/hour

ASO 40 240
AVOA 36 216
IPDO 22 132
MOPSO 30 180
NSGA-II 26 156
MONOA 10 60
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For fourth row, 

IR4 =5
(

900
1000

)

IM +1
(

800
1000

)

IM +2
(

400
1000

)

IM +1
(

200
1000

)

IM =6.3IM (26) 

For fifth row, 

IR5 =4
(

900
1000

)

IM +2
(

800
1000

)

IM +1
(

600
1000

)

IM +1
(

400
1000

)

IM +1
(

200
1000

)

IM =6.4IM (27) 

For sixth row, 

IR6 =5
(

900
1000

)

IM +2
(

800
1000

)

IM +2
(

400
1000

)

IM =6.9IM (28) 

For seventh row, 

IR7 =6
(

900
1000

)

IM +1
(

600
1000

)

IM +2
(

200
1000

)

IM =6.4IM (29) 

For eighth row, 

IR8 =5
(

900
1000

)

IM +1
(

800
1000

)

IM +1
(

600
1000

)

IM +2
(

400
1000

)

IM =6.7IM (30) 

For ninth row, 

IR9 =6
(

900
1000

)

IM +1
(

600
1000

)

IM +2
(

200
1000

)

IM =6.4IM (31) 

Using the novel OF depicted in Fig. 8 (b), ASO algorithm evaluates row currents as follows, For first row, 

IR1 =7
(

900
1000

)

IM +1
(

600
1000

)

IM +1
(

200
1000

)

IM =7.1IM (32) 

For second row, 

IR2 =4
(

900
1000

)

IM +1
(

800
1000

)

IM +2
(

600
1000

)

IM +2
(

400
1000

)

IM =6.4IM (33) 

For third row, 

IR3 =5
(

900
1000

)

IM +2
(

600
1000

)

IM +1
(

400
1000

)

IM +1
(

200
1000

)

IM =6.3IM (34) 

For fourth row, 

IR4 =4
(

900
1000

)

IM +1
(

800
1000

)

IM +2
(

600
1000

)

IM +2
(

400
1000

)

IM +1
(

200
1000

)

IM =6.3IM (35) 

For fifth row, 

IR5 =4
(

900
1000

)

IM +1
(

800
1000

)

IM +2
(

600
1000

)

IM +2
(

400
1000

)

IM =6.4IM (36) 

For sixth row, 

IR6 =7
(

900
1000

)

IM +2
(

200
1000

)

IM =6.7IM (37) 

Table III 
Row currents and power output analysis for various reconfiguration algorithms 
using weighted OF for pattern 1

TCT ASO

IRi Vm(V) IR(A) P(W) IRi Vm(V) IR(A) P(W)

IR1 5 VM 8.1 IM 40.5 VMIM IR2 9 VM 6.2 IM 55.8 VMIM
IR2 5 VM 8.1 IM 40.5 VMIM IR4 8 VM 6.3 IM 50.4 VMIM
IR3 5 VM 8.1 IM 40.5 VMIM IR5 7 VM 6.4 IM 44.8 VMIM
IR4 5 VM 8.1 IM 40.5 VMIM IR7 7 VM 6.4 IM 44.8 VMIM
IR5 5 VM 8.1 IM 40.5 VMIM IR9 7 VM 6.4 IM 44.8 VMIM
IR6 6 VM 7.2 IM 43.2 VMIM IR3 4 VM 6.5 IM 26 VMIM
IR7 9 VM 3.6 IM 32.4 VMIM IR1 3 VM 6.7 IM 20.1 VMIM
IR8 9 VM 3.6 IM 32.4 VMIM IR8 3 VM 6.7 IM 20.1 VMIM

(continued on next page)
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Table III (continued )

TCT ASO

IRi Vm(V) IR(A) P(W) IRi Vm(V) IR(A) P(W)

IR9 9 VM 3.6 IM 32.4 VMIM IR6 1 VM 6.9 IM 6.9 VMIM
AVOA IPDO

IRi Vm(V) IR(A) P(W) IRi Vm(V) IR(A) P(W)

IR6 9 VM 6.3 IM 56.7 VMIM IR1 9 VM 6.3 IM 56.7 VMIM
IR9 9 VM 6.3 IM 56.7 VMIM IR4 9 VM 6.3 IM 56.7 VMIM
IR1 7 VM 6.5 IM 45.5 VMIM IR2 7VM 6.4 IM 44.8 VMIM
IR4 7 VM 6.5 IM 45.5 VMIM IR5 6VM 6.5 IM 39 VMIM
IR8 7 VM 6.5 IM 45.5 VMIM IR7 6 VM 6.5 IM 26.4 VMIM
IR2 4 VM 6.6 IM 26.4 VMIM IR6 4 VM 6.6 IM 26.4 VMIM
IR3 4 VM 6.6 IM 26.4 VMIM IR8 4 VM 6.6 IM 26.4 VMIM
IR5 4 VM 6.6 IM 26.4 VMIM IR9 4 VM 6.6 IM 26.4 VMIM
IR7 4 VM 6.6 IM 26.4 VMIM IR3 1 VM 6.7 IM 6.7 VMIM
MONOA

IRi Vm(V) IR(A) P(W)

IR3 9 VM 6.3 IM 56.7 VMIM
IR7 9 VM 6.3 IM 56.7 VMIM
IR9 7 VM 6.4 IM 44.8 VMIM
IR2 6 VM 6.5 IM 39 VMIM
IR1 5 VM 6.6 IM 33 VMIM
IR4 5 VM 6.6 IM 33 VMIM
IR5 5 VM 6.6 IM 33 VMIM
IR6 5 VM 6.6 IM 33 VMIM
IR8 5 VM 6.6 IM 33 VMIM

Table IV 
Row currents and power output analysis for various reconfiguration algorithms 
using proposed OF for pattern 1

TCT ASO

IRi Vm(V) IR(A) P(W) IRi Vm(V) IR(A) P(W)

IR7 9 VM 3.6 IM VMIM IR3 9 VM 6.3 IM 56.7 VMIM
IR8 9 VM 3.6 IM VMIM IR4 9 VM 6.3 IM 56.7 VMIM
IR9 9 VM 3.6 IM VMIM IR8 9 VM 6.3 IM 56.7 VMIM
IR6 6 VM 7.2 IM VMIM IR2 6 VM 6.4 IM 38.4 VMIM
IR1 5 VM 8.1 IM VMIM IR5 6 VM 6.4 IM 38.4 VMIM
IR2 5 VM 8.1 IM VMIM IR9 6 VM 6.4 IM 38.4 VMIM
IR3 5 VM 8.1 IM VMIM IR7 3 VM 6.6 IM 19.8 VMIM
IR4 5 VM 8.1 IM VMIM IR6 2 VM 6.7 IM 13.4 VMIM
IR5 5 VM 8.1 IM VMIM IR1 1 VM 7.1 IM 7.1 VMIM
AVOA IPDO

IRi Vm(V) IR(A) P(W) IRi Vm(V) IR(A) P(W)

IR2 9 VM 6.4 IM 57.6 VMIM IR1 9 VM 6.4 IM 57.6 VMIM
IR3 9 VM 6.4 IM 57.6 VMIM IR4 9 VM 6.4 IM 57.6 VMIM
IR8 9 VM 6.4 IM 57.6 VMIM IR5 9 VM 6.4 IM 57.6 VMIM
IR1 6 VM 6.5 IM 39 VMIM IR6 9VM 6.4 IM 57.6 VMIM
IR6 6 VM 6.5 IM 39 VMIM IR7 9VM 6.4 IM 57.6 VMIM
IR7 6 VM 6.5 IM 39 VMIM IR2 4 VM 6.5 IM 26 VMIM
IR4 3 VM 6.6 IM 19.8 VMIM IR9 4VM 6.5 IM 26 VMIM
IR5 3 VM 6.6 IM 19.8 VMIM IR8 2 VM 6.6 IM 13.2 VMIM
IR9 3 VM 6.6 IM 19.8 VMIM IR3 1 VM 6.9 IM 6.9 VMIM
MONOA

IRi Vm(V) IR(A) P(W)

IR4 9 VM 6.4 IM 57.6 VMIM
IR5 9 VM 6.4 IM 57.6 VMIM
IR6 9 VM 6.4 IM 57.6 VMIM
IR9 9 VM 6.4 IM 57.6 VMIM
IR7 5 VM 6.5 IM 32.5 VMIM
IR1 4 VM 6.6 IM 26.4 VMIM
IR2 4 VM 6.6 IM 26.4 VMIM
IR3 4 VM 6.6 IM 26.4 VMIM
IR8 4 VM 6.6 IM 26.4 VMIM
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Table V 
Row currents and power output analysis for various reconfiguration algorithms 
using weighted OF for pattern 2

TCT ASO

IRi Vm(V) IR(A) P(W) IRi Vm(V) IR(A) P(W)

IR8 9 VM 6.3 IM 56.7 VMIM IR2 9 VM 6.5 IM 58.5 VMIM
IR9 9 VM 6.3 IM 56.7 VMIM IR9 9 VM 6.5 IM 58.5 VMIM
IR6 7 VM 6.6 IM 46.2 VMIM IR8 7 VM 6.7 IM 46.9 VMIM
IR7 7 VM 6.6 IM 46.2 VMIM IR5 6 VM 6.8 IM 40.8 VMIM
IR5 5 VM 7.6 IM 38 VMIM IR1 5 VM 7.2 IM 36 VMIM
IR4 5 VM 7.6 IM 38 VMIM IR7 4 VM 7.4 IM 29.6 VMIM
IR3 5 VM 7.6 IM 38 VMIM IR3 3 VM 7.7 IM 23.1 VMIM
IR2 2 VM 7.8 IM 15.6 VMIM IR4 3 VM 7.7 IM 23.1VMIM
IR1 2 VM 7.8 IM 15.6 VMIM IR6 3 VM 7.7 IM 23.1 VMIM
AVOA IPDO

IRi Vm(V) IR(A) P(W) IRi Vm(V) IR(A) P(W)

IR4 9 VM 6.9 IM 62.1 VMIM IR1 9 VM 6.9 IM 62.1 VMIM
IR6 9 VM 6.9 IM 62.1 VMIM IR4 9 VM 6.9 IM 62.1 VMIM
IR8 9 VM 6.9 IM 62.1 VMIM IR5 9 VM 6.9 IM 62.1 VMIM
IR9 6 VM 7.1 IM 42.6 VMIM IR7 9 VM 6.9 IM 62.1 VMIM
IR7 5 VM 7.2 IM 36 VMIM IR9 9 VM 6.9 IM 62.1 VMIM
IR1 7 VM 7.3 IM 29.2 VMIM IR6 4 VM 7.2 IM 28.8 VMIM
IR2 7 VM 7.3 IM 29.2 VMIM IR8 3 VM 7.3 IM 21.9 VMIM
IR3 7 VM 7.3 IM 29.2 VMIM IR2 2VM 7.6 IM 15.2 VMIM
IR5 7 VM 7.3 IM 29.2 VMIM IR3 2 VM 7.6 IM 15.2 VMIM
MONOA

IRi Vm(V) IR(A) P(W)

IR9 9 VM 6.9 IM 62.1 VMIM
IR6 8 VM 7 IM 56 VMIM
IR7 8 VM 7 IM 56 VMIM
IR1 6 VM 7.2 IM 43.2 VMIM
IR2 6 VM 7.2 IM 43.2 VMIM
IR3 6 VM 7.2 IM 43.2 VMIM
IR4 6 VM 7.2 IM 43.2 VMIM
IR5 6 VM 7.2 IM 43.2 VMIM
IR8 1 VM 7.3 IM 7.3 VMIM

Table VI 
Row currents and power output analysis for various reconfiguration algorithms 
using proposed OF for pattern 2

TCT ASO

IRi Vm(V) IR(A) P(W) IRi Vm(V) IR(A) P(W)

IR8 9 VM 6.3 IM 56.7 VMIM IR1 9 VM 6.9 IM 62.1 VMIM
IR9 9 VM 6.3 IM 56.7 VMIM IR2 9 VM 6.9 IM 62.1VMIM
IR6 7 VM 6.6 IM 46.2 VMIM IR4 7 VM 7 IM 49 VMIM
IR7 7 VM 6.6 IM 46.2 VMIM IR9 6 VM 7.1 IM 42.6 VMIM
IR3 5 VM 7.6 IM 38 VMIM IR5 5 VM 7.2 IM 36 VMIM
IR4 5 VM 7.6IM 38 VMIM IR8 5 VM 7.2 IM 36 VMIM
IR5 5 VM 7.6 IM 38 VMIM IR3 3 VM 7.3 IM 21.9 VMIM
IR1 2 VM 7.6 IM 15.6 VMIM IR6 3 VM 7.3 IM 21.9 VMIM
IR2 2 VM 7.6 IM 15.6 VMIM IR7 3 VM 7.3 IM 21.9 VMIM
AVOA IPDO

IRi Vm(V) IR(A) P(W) IRi Vm(V) IR(A) P(W)

IR3 9 VM 7 IM 63 VMIM IR2 9 VM 7 IM 63 VMIM
IR4 9 VM 7 IM 63 VMIM IR4 9 VM 7 IM 63 VMIM
IR7 9 VM 7 IM 63 VMIM IR9 9 VM 7 IM 63 VMIM
IR1 6 VM 7.1 IM 42.6 VMIM IR1 6 VM 7.2 IM 43.2 VMIM
IR2 6 VM 7.1 IM 42.6 VMIM IR3 6 VM 7.2 IM 43.2 VMIM
IR6 4 VM 7.2 IM 28.8 VMIM IR5 6 VM 7.2 IM 43.2 VMIM
IR8 4 VM 7.2 IM 28.8 VMIM IR6 6 VM 7.2 IM 43.2 VMIM
IR5 2 VM 7.3 IM 14.6 VMIM IR7 6 VM 7.2 IM 43.2 VMIM
IR9 2 VM 7.3 IM 14.6 VMIM IR8 6 VM 7.2 IM 43.2 VMIM
MONOA

IRi Vm(V) IR(A) P(W)

IR3 9 VM 7 IM 63 VMIM
(continued on next page)
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Table VI (continued )

MONOA

IRi Vm(V) IR(A) P(W)

IR4 9 VM 7 IM 63 VMIM
IR9 9 VM 7 IM 63 VMIM
IR1 6 VM 7.2 IM 43.2 VMIM
IR2 6 VM 7.2 IM 43.2 VMIM
IR5 6 VM 7.2 IM 43.2 VMIM
IR6 6 VM 7.2 IM 43.2 VMIM
IR7 6 VM 7.2 IM 43.2 VMIM
IR8 6 VM 7.2 IM 43.2 VMIM

For seventh row, 

IR7 =4
(

900
1000

)

IM +3
(

800
1000

)

IM +1
(

400
1000

)

IM +1
(

200
1000

)

IM =6.6IM (38) 

For eighth row, 

IR8 =5
(

900
1000

)

IM +1
(

800
1000

)

IM +1
(

600
1000

)

IM +2
(

200
1000

)

IM =6.3IM (39) 

For the ninth row, 

IR9 =4
(

900
1000

)

IM +2
(

800
1000

)

IM +1
(

600
1000

)

IM +1
(

400
1000

)

IM +1
(

200
1000

)

IM =6.4IM (40) 

Using the weighted OF depicted in Fig. 8 (a), MONOA algorithm evaluates row currents as follows,
For first row, 

IR1 =6
(

900
1000

)

IM +1
(

600
1000

)

IM +1
(

400
1000

)

IM +1
(

200
1000

)

IM =6.6IM (41) 

For second row, 

IR2 =5
(

900
1000

)

IM +2
(

600
1000

)

IM +2
(

400
1000

)

IM =6.5IM (42) 

For third row, 

IR3 =5
(

900
1000

)

IM +2
(

600
1000

)

IM +1
(

400
1000

)

IM +1
(

200
1000

)

IM =6.3IM (43) 

For fourth row, 

IR4 =6
(

900
1000

)

IM +1
(

800
1000

)

IM +2
(

200
1000

)

IM =6.6IM (44) 

For fifth row, 

IR5 =2
(

900
1000

)

IM +5
(

800
1000

)

IM +1
(

600
1000

)

IM +1
(

200
1000

)

IM =6.6IM (45) 

For sixth row, 

IR6 =6
(

900
1000

)

IM +1
(

600
1000

)

IM +1
(

400
1000

)

IM +1
(

200
1000

)

IM =6.6IM (46) 

For seventh row, 

IR7 =5
(

900
1000

)

IM +1
(

800
1000

)

IM +2
(

400
1000

)

IM +1
(

200
1000

)

IM =6.3IM (47) 

For eighth row, 

IR8 =6
(

900
1000

)

IM +1
(

800
1000

)

IM +2
(

200
1000

)

IM =6.6IM (48) 

For ninth row, 

IR9 =4
(

900
1000

)

IM +1
(

800
1000

)

IM +2
(

600
1000

)

IM +2
(

400
1000

)

IM =6.4IM (49) 

Using the novel OF depicted in Fig. 8 (b), MONOA algorithm evaluates row currents as follows,
For first row, 

IR1 =4
(

900
1000

)

IM +2
(

800
1000

)

IM +2
(

600
1000

)

IM +1
(

200
1000

)

IM =6.6IM (50) 
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For second row, 

IR2 =6
(

900
1000

)

IM +1
(

600
1000

)

IM +1
(

400
1000

)

IM +1
(

200
1000

)

IM =6.6IM (51) 

For third row, 

IR3 =6
(

900
1000

)

IM +1
(

600
1000

)

IM +1
(

400
1000

)

IM +1
(

200
1000

)

IM =6.6IM (52) 

For fourth row, 

IR4 =4
(

900
1000

)

IM +2
(

800
1000

)

IM +1
(

600
1000

)

IM +1
(

400
1000

)

IM +1
(

200
1000

)

IM =6.4IM (53) 

For fifth row, 

IR5 =6
(

900
1000

)

IM +2
(

400
1000

)

IM +1
(

200
1000

)

IM =6.4IM (54) 

For sixth row, 

IR6 =4
(

900
1000

)

IM +2
(

800
1000

)

IM +1
(

600
1000

)

IM +1
(

400
1000

)

IM +1
(

200
1000

)

IM =6.4IM (55) 

For seventh row, 

IR7 =5
(

900
1000

)

IM +1
(

800
1000

)

IM +1
(

600
1000

)

IM +1
(

400
1000

)

IM +1
(

200
1000

)

IM =6.5IM (56) 

For eighth row, 

IR8 =6
(

900
1000

)

IM +1
(

600
1000

)

IM +1
(

400
1000

)

IM +1
(

200
1000

)

IM =6.6IM (57) 

For ninth row, 

IR9 =4
(

900
1000

)

IM +2
(

800
1000

)

IM +1
(

600
1000

)

IM +1
(

400
1000

)

IM +1
(

200
1000

)

IM =6.4IM (58) 

The row current values for ASO, AVOA, IPDO and MONOA are computed for pattern 1 and presented in Table 3 and Table 4, with corresponding 
values for pattern 2 listed in Table 5 and Table 6. Results show that algorithms using the novel OF consistently achieve higher power output across 
both shading patterns. For instance, PSO improves to 56.7 and 62.1 VMIM from 55.8 to 58.5 VMIM using the novel function. Similarly, AVOA, IPDO, and 
MONOA show power gains up to 57.6 and 63 VMIM. These improvements confirm that the novel OF enhances algorithm performance by guiding 
efficient exploration without the need for weight tuning, making it well-suited for PV array reconfiguration.

References

[1] M. Premkumar, P. Jangir, C. Ramakrishnan, G. Nalinipriya, H.H. Alhelou, B. 
S. Kumar, Identification of solar photovoltaic model parameters using an improved 
gradient-based optimization algorithm with chaotic drifts, IEEE Access 9 (2021) 
62347–62379.

[2] A.R. Kalaiarasi, S. Aswin, M. Mukilan, D. Rohith, Literature review on optimizing 
solar panel efficiency through dynamic solar tracking, in: 2025 International 
Conference on Electronics and Renewable Systems (ICEARS), 2025, pp. 13–18.

[3] K.S. Kavin, P. Subha Karuvelam, M. Devesh Raj, M. Sivasubramanian, A novel KSK 
converter with machine learning MPPT for PV applications, Elec. Power Compon. 
Syst. (2024) 1–19.

[4] K.S. Kavin, P.S. Karuvelam, M. Matcha, S. Vendoti, Improved BRBFNN-based MPPT 
algorithm for coupled inductor KSK converter for sustainable PV system 
applications, Electr. Eng. (2025) 1–23.

[5] D. Yousri, T.S. Babu, E. Beshr, M.B. Eteiba, D. Allam, A robust strategy based on 
marine predators algorithm for large scale photovoltaic array reconfiguration to 
mitigate the partial shading effect on the performance of PV system, IEEE Access 8 
(2020) 112407–112426.

[6] S. Rezazadeh, A. Moradzadeh, K. Pourhossein, M. Akrami, B. Mohammadi-Ivatloo, 
A. Anvari-Moghaddam, Photovoltaic array reconfiguration under partial shading 
conditions for maximum power extraction: a state-of-the-art review and new 
solution method, Energy Convers. Manag. 258 (2022) 115468.

[7] T.S. Babu, D. Yousri, K. Balasubramanian, Photovoltaic array reconfiguration 
system for maximizing the harvested power using population-based algorithms, 
IEEE Access 8 (2020) 109608–109624.

[8] D. Yousri, T.S. Babu, E. Beshr, M.B. Eteiba, D. Allam, A robust strategy based on 
marine predators algorithm for large scale photovoltaic array reconfiguration to 
mitigate the partial shading effect on the performance of PV system, IEEE Access 8 
(2020) 112407–112426.

[9] M. Alkahtani, Z. Wu, C.S. Kuka, M.S. Alahammad, K. Ni, A Novel PV array 
reconfiguration algorithm approach to optimising power generation across non- 
uniformly aged PV arrays by merely repositioning, Op J. 3 (1) (2020) 5.

[10] C.V. Chandrakant, S. Mikkili, A typical review on static reconfiguration strategies 
in photovoltaic array under non-uniform shading conditions, CSEE J. Power 
Energy Syst. 9 (6) (2020) 2018–2039.

[11] M.N. Nazeri, M.F. Tajuddin, T.S. Babu, A. Azmi, M. Malvoni, N.M. Kumar, Firefly 
algorithm-based photovoltaic array reconfiguration for maximum power extraction 
during mismatch conditions, Sustainability 13 (6) (2021) 3206.

[12] B. Yang, R. Shao, M. Zhang, H. Ye, B. Liu, T. Bao, J. Wang, H. Shu, Y. Ren, H. Ye, 
Socio-inspired democratic political algorithm for optimal PV array reconfiguration 
to mitigate partial shading, Sustain. Energy Technol. Assessments 48 (2021) 
101627.

[13] G.H. Varma, V.R. Barry, R.K. Jain, D. Kumar, An MMTES algorithm for dynamic 
photovoltaic array reconfiguration to enhance power output under partial shading 
conditions, IET Renew. Power Gener. 15 (4) (2021) 809–820.

[14] S. Rezazadeh, A. Moradzadeh, S.M. Hashemzadeh, K. Pourhossein, B. Mohammadi- 
Ivatloo, S.H. Hosseini, A novel prime numbers-based PV array reconfiguration 
solution to produce maximum energy under partial shade conditions, Sustain. 
Energy Technol. Assessments 47 (2021) 101498.

[15] V.M. Tatabhatla, A. Agarwal, T. Kanumuri, A chaos map based reconfiguration of 
solar array to mitigate the effects of partial shading, IEEE Trans. Energy Convers. 
37 (2) (2021) 811–823.

[16] D. Yousri, S.B. Thanikanti, K. Balasubramanian, A. Osama, Multi-objective grey 
wolf optimizer for optimal design of switching matrix for shaded PV array dynamic 
reconfiguration, IEEE Access 8 (2020) 159931–159946.

[17] H. Rezk, A. Fathy, M. Aly, A robust photovoltaic array reconfiguration strategy 
based on coyote optimization algorithm for enhancing the extracted power under 
partial shadow condition, Energy Rep. 7 (2021) 109–124.

[18] N.K. Solaisamy, P.W. David, P. Murugesan, Performance improvement of partial 
shaded solar PV system using Unbalanced adaptive dynamic reconfiguration 
technique, Renew. Energy 246 (2025) 122883.

[19] A. Loukriz, M. Kichene, A. Bendib, M. Drif, D. Saigaa, H. Ahmed, Improved 
dynamic reconfiguration strategy for power maximization of TCT interconnected 
PV arrays under partial shading conditions, Electr. Eng. 107 (1) (2025) 459–470.

[20] N.A. Kadhim, A.A. Obed, A.J. Abid, A.L. Saleh, R.J. Hassoon, A systematic review 
for reconfiguring photovoltaic arrays under conditions of partial shading, Electr. 
Eng. Techn. J. 1 (1) (2024) 20–34.

K. Eswaramoorthy et al.                                                                                                                                                                                                                       Renewable Energy 257 (2026) 124754 

15 

http://refhub.elsevier.com/S0960-1481(25)02418-8/sref1
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref1
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref1
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref1
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref2
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref2
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref2
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref3
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref3
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref3
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref4
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref4
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref4
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref5
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref5
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref5
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref5
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref6
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref6
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref6
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref6
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref7
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref7
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref7
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref8
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref8
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref8
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref8
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref9
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref9
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref9
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref10
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref10
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref10
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref11
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref11
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref11
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref12
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref12
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref12
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref12
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref13
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref13
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref13
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref14
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref14
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref14
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref14
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref15
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref15
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref15
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref16
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref16
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref16
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref17
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref17
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref17
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref18
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref18
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref18
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref19
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref19
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref19
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref20
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref20
http://refhub.elsevier.com/S0960-1481(25)02418-8/sref20


[21] N.A. Kadhim, A.A. Obed, A.J. Abid, H. Kotb, A. Emara, Optimal PV reconfiguration 
under partial shading based on white shark optimization, IEEE Access 12 (2024) 
27385–27398.

[22] I.U. Khalil, M. Jalal, A. ul Haq, M. Ahsan, U. Ghumman, A fuzzy reconfiguration 
approach for mitigating power losses in PV systems, Results Eng. 25 (2025) 
103965.

[23] H.I. Solis-Cisneros, P.Y. Sevilla-Camacho, J.B. Robles-Ocampo, M.A. Zuñiga-Reyes, 
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