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Abstract—In recent years, communication technologies are 

growing significantly and Cognitive Radio (CR) networks is an 

expert system to adjust the radio spectrum. However, wireless 

communication diverse scenarios and distinguishing spectrum 

occupancy poses a significant challenge in Spectrum Sensing 

(SS). As it requires high-performance and flexible solutions to 

accommodate varied characteristics and ensure seamless 

connectivity. Hence, a Machine Learning (ML) based algorithm 

namely Support Vector Machine along with Elastic Net 

Regularization and Radial Basis Function (SVM-ENR-RBF) is 

proposed to detect and classify spectrum signals. Initially, the 

spectrum signals are collected from RadioML2016.10b dataset 

which are preprocessed by Min-Max scaler to normalize In-

phase (I) and Quadrature Components (QC) of modulated 

signals. Finally, SVM classifier provides a regularization 

technique namely ENR and a kernel function RBF to make 

easier to analyze as well as classify the spectrum occupancy. The 

combination of SVM-ENR-RBF improves the detection 

accuracy, robustness and generalization capabilities. From the 

results, SVM-ENR-RBF method offers high results of 

probability of detection, prediction accuracy, and computation 

time results as 99.8%, 99.2%, and 1.6sec respectively when 

compared with existing Reinforced Learning-Extreme Learning 

Machine. 

Keywords—cognitive radio networks, elastic net 

regularization, machine learning, radial basis function, spectrum 

sensing, support vector machine. 

I. INTRODUCTION 

In general, Cognitive Radio Networks (CRNs) utilize ML 
algorithms to detect Idle Frequency Bands (IFB) and optimize 
SS. It helps in enabling dynamic spectrum access and mainly 
divided into two types of users namely Primary Users (Pus) as 
well as Secondary Users (SUs). The Cognitive Radio (CR) 
operates under an overlay scheme, where users perform a 
listen-before-talk (LBT) procedure to sense the channel for 
interference-free usage before transmission, only transmitting 
when the channel is detected as idle [1]. However, they do not 
have limited spectrum usage rights. Here, SUs are also known 
as unauthorized users and utilize the spectrum together with 
PUs [2]. The rising of wireless communication containing 
developments in infrastructure, and emerging technologies 
crucially effects SS in CRNs. Here, SS is the process of 

detecting spectrum holes or IFB, enabling energetic spectrum 
access, and improved wireless network capacity [3]. The 
enabling effective reprocess refining wireless communication 
and rapidly increasing spectrum scarcity. Also, wireless 
device propagation and rising data rate demands increase 
spectrum scarcity, requiring innovative spectrum controlling 
results immediately [4].  

The CR devices transmit their precisely estimated energy 
levels to the fusion center, enabling informed decision-making 
through data fusion and optimized spectrum sensing. The CR 
encounters a significant obstacle in the form of the Hidden 
Terminal Problem (HTP), which is exacerbated by shadowing 
and fading effects. These phenomena lead to false alarms and 
misdetection issues, resulting in interference to Pus. Here, 
augmenting SS in CR is dynamic for revealing effective 
spectrum utilization, and improve network capacity [5]. 
Similarly, a Dynamic Spectrum Access (DSA) systems 
control innovative devices to utilize provisional spectrum 
holes, easing scarcity and enhancing efficiency by reusing 
underutilized FB [6]. Furthermore, a Covariance Matrix-
aware Convolutional Neural Networks (CM-CNN) influences 
general CM training samples to optimize constraints, creating 
a cultured SS mapping function and LSTM-ANN (Long 
Short-Term Memory-Artificial Neural Network) records 
multi-slot correlations, showing complex consecutive 
dependencies and patterns in dynamic spectrum access [7]. 
Additionally, K-means clustering and SVM algorithms utilize 
low-dimensional probability vectors as feature vectors, 
allowing effective spectrum categorizing and grouping [8]. 

• The spectrum signals are taken from input data and 
then preprocessed by using Min-Max scaler to 
normalize the In-phase (I) and Quadrature 
Components (QC) of modulated signals, where this 
transformation conserves the signal’s distribution and 
relationships. 

• The normalized data is processed with Elastic Net 
Regularization (ENR), as it robust feature selection, 
reduces overfitting, and remove irrelevant features. 

• Finally, RBF transforms the processed non-linear data 
into a higher-dimensional space by creating it linearly 
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discrete and enables non-linear separation of spectrum 
states and achieved best results in detection 
probability, prediction accuracy, and computation 
time. 

The construction of this paper is given as follows: section 
2 describes about existing models along with their advantages 
and limitations, section 3 summaries the proposed 
methodology, section 4 demonstrates the experimental results, 
section 5 delivers a discussion of the results, section 6 
concludes the paper. 

II. LITERATURE REVIEW 

Diego Fernando Carrera et al [9] demonstrated a 
Multilayer Extreme Learning Machine (M-ELM) to takeaway 
Multiple-input Multiple-output (MIMO) organisms for 
MilliMeter-wave (mmWave) organizations. The suggested 
M-ELM method augmented hidden layer neuron count to 
maximize system demonstration and minimize receiver 
problem in CR method. The M-ELM method crucially 
decreased processing time while conserving accuracy 
corresponding to ELM receivers, improving real-time CRNs 
performance. However, ideal performance required careful 
configuration of hidden layer neurons, striking a balance 
between model complexity and simplification. 

Shanshan Wang et al [10] introduced an Online Sequential 
ELM (OS-ELM) for active intervention behavior in cognitive 
radar. The suggested OS-ELM method utilizes models namely 
such as OS-ELM Angle Prediction (OS-ELM-AP), Frequency 
Prediction (OS-ELM-FP) to calculate frequency and angle in 
cognitive radar, by permitting capable and accurate active 
interference calculation. The OS-ELM method demonstrated 
superior prediction accuracy with lower computational 
complexity, confirmed through simulations and measured 
interference data analysis. However, the OS-ELM method's 
efficiency was delayed by high computational complexities, 
regulating its suitability for dynamic interference prediction 
applications in real-time CRNs. 

N. Sureka and K. Gunaseelan  [11] developed Reinforced 
Learning (RL) and ELM (RL-ELM) to detect emulation 
attacks in dynamic CR-based wireless communication 
networks. By integrating RL with ELM led to rapid learning 
capabilities, RL-ELM effectively identifies and diminishes 
emulation attacks. The suggested RL-ELM efficiently traced 
and identified Primary User Emulation Attack (PUEA) 
patterns with minimal processing time and optimal accuracy. 
Here, RL-ELM algorithms, with reduced complexity, 
enhanced detection rates and suitability for dynamic CR 
environments by enabling real-time SS and efficient resource 
allocation. However, its dependence on ML algorithms 
controlled scalability and robustness along with introducing 
exposure to data quality, noise, and adversarial attacks. 

S. Sindhuja et al [12] established a Global Channel State 
Information (GSCI)-Fuzzy ELM (GSCI-FELM) to diagnose 
local spectrum dumps and assign optimal channel to the 
Secondary User-Internet of Things (SU-IoT) devices 
effectively. The suggested GSCI-FELM identified the 
spectrum holes at SU-IoT, resolving PU identification by 
changing it into Idle Channel State (IDC) recognition and 
classification. The GSCI-FELM technique significantly 
minimized energy consumption in CR-IoT networks, 
achieved in reduction, and enhanced sustainability. However, 
it has limited improvement in accuracy and potential for 

further optimization in time-consuming and interference 
signal identification existed. 

M. Varun and  C. Annadurai [13] presented the two tier 
Learned Distributed Networking (LDN) framework for 
sensing the spectrum of cellular networks. The suggested 
LDN framework has two phases: first feature extractor phase 
where distinguished feature vectors were collected and next 
phase, Optimized ELM (O-ELM) used for evaluation. The 
LDN framework exceeded innovative O-ELM by achieving 
superior performance, it was enhanced accuracy, and reduced 
computational complexity for effective healthcare spectrum 
detecting in CRNs. However, the ELM's scalability was 
slowed down by its dependence on a limited dataset and 
simplistic features led to restricting its adaptability to complex 
and real-world CR environments. 

III. METHODOLOGY 
The proposed SVM-ENR-RBF methodology is done in 

four steps including first step, it begins with collecting 
spectrum signals from the RadioML2016.10b dataset, a 
complete repository of wireless communication signals. Then, 
in second step, the collected data given for preprocessing, 
where Min-Max scaling normalizes the In-phase (I) and 
Quadrature Components (QC) of modulated signals by 
enhancing data stability. Next, the normalized data is fed into 
an SVM classifier, authorized by ENR and RBF kernel. Then, 
this combination enables the SVM spectrum sensor to 
distinguish between occupied and unoccupied spectrum 
states, boasting excellent performance with high accuracy and 
detection probability. By using ENR's balanced regularization 
and RBF's non-linear separation capabilities, the proposed 
method enhances SS, making it a game-changer for effective 
spectrum consumption in CRNs. The block diagram in Fig. 1. 
displays the outline of proposed system.  

 
Fig. 1. Block digram of proposed model 

A. Dataset 

This SVM-ENR-RBF method utilizes the publicly 
available RadioML2016.10B dataset [14], generate by 
O’Shea and Corgan. This dataset consists of 10 modulated 
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signal types namely 8 digital namely BPSK, QPSK,8PSK, 
QAM16, QAM64, CPFSK, GFSK, and PAM4. Also, 2 analog 
signals such as AM-SSB and AM-DSB modulations along 
with Signal-to-Noise Ratio (SNR) values, where it has range 
from -20 dB to +13 dB in 2 dB increments. This dataset is 
divided into two samples namely positive and negative, where 
positive samples includes 8 digital modulated signals and 
negative samples includes additive noise following the zero-
mean Circularly Symmetric Complex Gaussian 
(CSCG)distribution. The dataset has 2 × 1024 time samples 
per signal, with I and QCs separated. The data is subdivided 
into training (70%), validation (15%), and testing sets (15%) 
to estimate the performance of the ML-based SS approach. 

B. Preprocessing 

For the proposed SVM-ENR-RBF method, preprocessing 
step applies new filtering and constrained techniques to 
improve the signals and SNR. It helps to remove transient 
peaks, eliminating anomalies and normalizing the data for 
effective analysis. Also, preprocessing ensures high-quality 
input data by improving SS and categorization tasks in CRNs 
[15]. For preprocessing the spectrum signals, Min-Max scaler 
is used to normalize the I and QCs of modulated signals. This 
scaler is taken from scikit learn library and the signals are 
denoted as composite valued time-series data, with 1024 
samples per signal. Then, the scaler subtracts the minimum 
value and then divides the normalizing data by ranging 0 and 
1 for each signal. This transformation conserves the signal’s 
distribution and relationships by confirming the model learns 
from relevant designs rather than scale differences [16]. Here, 
preprocessed spectrum data is given as input into 
classification process to determine occupied or unoccupied 
status of spectrum with high accuracy. 

C. SVM Classification 

For classification process of proposed SVM-ENR-RBF 
method, the SVM [17] takes normalized signals as input and 
creates a linear hyperplane as a decision boundary by dividing 
two classes while augmenting the border or distance between 
the boundary lines.  By exploiting this border, SVM improves 
the classification and efficiency in differentiating between 
classes by finding the best hyperplane which is able to reduce 
the risk of misclassification and improves overall 
classification accuracy. Here, SVM provides some 
regularization techniques namely Lasso Regression (LR), 
Ridge Regression (RR), ENR, and Dropout regularization 
(DR) [18] to decrease the feature quantity, scale and dropout 
features during the training period. Here, SVM classifier 
utilizes ENR and RBF, where ENR balances L1 and L2 
penalties for thinly distributed and robust feature selection. 
While, the RBF kernel enables non-linear separation of 
spectrum states. Also, a two-class SVM model is modified by 
using the one-versus-rest method to overcome two-class 

classification problems. The optimum classification boundary 
is defined by the Equation (1) given below: 

�� + 	 = 0                                     (1) 

Where, �  is defined as weight vector acquired during 
training, �  is an input vector, and 	  is the constant bias. 
Support vectors are identified as data points that satisfy 
Equation (2) below:  

���� + 	
 = 1                                 (2) 

Where, ���+1, −1� represents the class label, � is weight 
vector, and 	  is bias. To classify the test observations, the 
decision function Equation (3) is employed. 

���
 = ������� + 	
                            (3) 

Here, SVM kernel functions are used to convert input 
features into a higher-dimensional space by enabling linear 
categorization with a hyperplane, where patterns are non-
linearly separable. This process is called as kernel trick, where 
it allows SVM classifiers to map non-linear relationships into 
linearly separable spaces efficiently leads to accurate 
classification. Also, SVMs provides three kernel functions 
namely linear, polynomial, and RBF. Here, the main objective 
is to increase the optimum hyperplane, as SVM ensures a 
strong classification and refinement between spectrum 
occupancy classes. However, the proposed SVM method 
influences the strengths of ENR and the RBF kernel function 
to classify spectrum occupancy. 

1) Elastic Net Regularization: In this SVM-ENR-RBF 

method, ENR combines the benefits of L1 (LR) and L2 (RR) 

regularization techniques which are provided by SVM 

classifier. By combining these two consequent terms into loss 

function, ENR reduces overfitting, improve generalization 

and selects relevant features efficiently. Here, L1 term 

���‖�‖1
  groups irrelevant weights to zero stimulating 

sparse models and removing irrelevant features. Similarly, 

the L2 term ���‖�‖1
 decreases the size of large weights by 

soothing the model and avoiding unnecessary weighting [20]. 

The loss function is given in Equation (4): 

���, 	
 = 1
2� ‖�‖� + �1 ∑|�!| + "2 ∑ �!�          (4) 

Where, ���, 	
  is loss function, �1  and "2  are 
regularization parameters and ‖�‖� = �. �  control the two 
regularization strengths. The objective function to minimize 
for ENR is Equation (5):

$���$�%& ∑ ��' − �. �' − 	
�(
')� +∝ + ∑ +

∝��,-


�
.
/)� |��!|                                                  (5)

Where, �'  is the actual output, coefficients � =
��, ��, … … �. to minimize the residual data. 

2) RBF kernel function: Then, RBF kernel is also named 

as the Gaussian kernel or squared exponential kernel and it is 

a common kernel function utilized in SVMs, Neural 

Networks (NNs) and other ML algorithms. Here, RBF 

transforms non-linear data into a higher-dimensional space 

by creating it linearly discrete. It also maps input data to a 

new feature space by using Equation (6): 

1�2, �
 = &�3�−4‖2 − �‖�
                   (6) 

Where, 2  is vector of energy statistic, �  is the output 
vector, and 4 is a constant. 
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In this SVM-ENR-RBF method, RBF kernel acquires 
complex relationships between SS features, by differentiating 
occupied and idle spectrum efficiently. This method improves 
robustness beside noise and intervention, improves reliability 
in energetic environments. Also, it enhances detection 
accuracy, classification effectiveness, improves spectrum 
utilization in CRNs, and flexible SS for next-generation 
wireless communication systems [21]. 

IV. EXPERIMENTAL RESULTS 

This study aims to classify spectrum signals either 
spectrum occupied or unoccupied with SVM-ENR-RBF 

model which is implemented by a python package called 
Scikit learn. The experimental setup utilized Windows 10, 
intel core i5 CPU, 8 GB of memory and a 3.20 GHz processing 
speed. For evaluating, the results various metrics are used, 
such as prediction accuracy, probability of detection, and 
computation time are considered and described as Equation 
(7) to (9). 

Where,  56   and 58  signifies true negative and positive, 
96, 98   refers false negative and false positive. 

8:&;�"<�=� >""?:>"� =
@AB@C

@AB@CBDABDC
                (7) 

8:=	>	�E�<� =� ;&<&"<�=� =
@FGHI .F FJ AK'(HKL MNOKN �AM


@FGHI .F FJ MNOK �AMBCF'NO N'P.HIN

                                                   (8) 

�=$3?<><�=� <�$& = "1 ∗  ��� ∗  ; + �R
               (9) 

A. Performance analysis  

The proposed SVM-ENR-RBF model is analyzed on 
RadioML.2016.10b dataset. The performance evaluation is 
achieved by providing a regularization and a kernel function 
namely ENR and RBF respectively. For performance analysis, 
the proposed SVM model is compared with Random Forest-

SS (RF-SS), K-Nearest Neighbor (KNN), and Artificial 
Neural Networks-SS (ANN-SS).  The evaluation of SVM 
classification model is explained below in Table 1. 

Table 1 describes comparison of proposed method with 
existing models, the results showcased that the SVM model’s 
dominance in probability of detection 99.8%, prediction 
accuracy 99.2%, and computation time 1.6 sec as shown in 
Table 1. 

TABLE I.  PERFORMANCE ANALYSIS FOR CLASSIFICATION MODELS 

Performance of existing models Probability of detection(%) Prediction Accuracy(%) Computation time (sec) 

 RF-SS 98.3 98.7 8.3 

 KNN 97.8 98.4 5.0 
ANN-SS 97.62 98.51 3.4 

Proposed SVM model 99.8 99.2 1.6 

B. Comparative analysis  

The suggested SVM-ENR-RBF model is associated with 
Reinforced Learning (RL) and Extreme Learning Machine 
(RL-ELM) [11], Global Channel State Information (GSCI)-

Fuzzy ELM (GSCI-FELM) [12], and Learned Distributed 
Networking (LDN) framework [13] with probability of 
detection, prediction accuracy and computation time which 
are given below in Table 2. 

TABLE II.  COMPARATIVE ANALYSIS OF PROPOSED MODEL 

Comparative models Probability of detection(%) Prediction Accuracy(%) Computation time (sec) 

RL-ELM [11] 98.9 N/A 10.0 
GSCI-FELM [12] 92.5 98.2 7.2 

LDN framework [13] 99.0 99.0 N/A 

Proposed SVM 99.8 99.2 1.6 

From Table 2, the proposed SVM-ENR-RBF model 
offered high results of probability of detection, prediction 
accuracy, and computation time results with 99.8%, 99.2%, 
and 1.6 sec respectively by comparing with existing models 
namely RL-ELM [11], GSCI-FELM [12], and LDN 
framework [13]. The probability of detection of RL-ELM [11] 
is 98.9% along with its computation time 0.6 sec. Similarly, 
probability of detection, prediction accuracy, computation 
time of GSCI-FELM [12] is 92.5%, 98.2%, and 7.2 sec 
respectively. Moreover, at last compared with the LDN 
framework [13], where its probability of prediction is 99.0%, 
and prediction accuracy is 99.0%. Here, Table 2 showcasing 
the proposed model's effectiveness in detection and prediction 
tasks. It helps to improve detection accuracy, robustness to 
noise and enhanced simplification abilities.  

V. DISCUSSION 

For efficient SS in CRN frameworks, an SVM-ENR-RBF 
model is proposed by manipulating the interaction of ENR and 
RBF kernel. The ENR balances L1 (LR) and L2 (RR) 
penalties efficiently by ensuring the robust feature selection 

though reducing overfitting. Moreover, the RBF kernel allows 
non-linear separation of spectrum occupancy either occupied 
or unoccupied by improving sensing accuracy. In augmenting 
the deal between regularization techniques and kernel 
parameters, the proposed SVM-ENR-RBF spectrum sensor 
achieved higher performance, by reaching 99.8% of detection 
probability, 99.2% of prediction accuracy, and a computation 
time of just 1.6 seconds only. This outperforms existing 
models, namely RL-ELM [11] (probability of detection is 
98.9% along with its computation time 0.6 sec), GSCI-FELM 
[12] (probability of detection, prediction accuracy, 
computation time is 92.5%, 98.2%, and 7.2 sec respectively), 
and LDN framework [13] (probability of prediction is 99.0%, 
and prediction accuracy is 99.0%). It is showing that the 
proposed SVM-ENR-RBF model’s excellent performance 
and effectiveness in detection and calculation tasks by 
improving detection accuracy, enhancing robustness to noise 
and intervention.  This SVM-ENR-RBF model improved the 
generalization abilities diagonally in various situations, earlier 
processing time and decreased computational complexity. 
Also, it has a greater performance in low SNR atmospheres, 
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and authenticating its prospective for real-world CR and 
wireless communication applications. 

VI. CONCLUSION 

In this, an ML based SVM-ENR-RBF model is proposed 
to accurately analyze and classify spectrum signals. This 
process begins with the collection of spectrum signals from 
the RadiML2016.10b dataset. Then, the spectrum signals are 
preprocessed by using Min-Max scaler to normalize the I and 
QCs of modulated signals. Next, the normalized data is given 
as input to SVM classifier. Here, SVM classifier provide ENR 
and RBF kernel, where ENR technique balances L1 and L2 
penalties by ensuring robust feature selection and decreasing 
overfitting. Although, RBF kernel permits non-linear 
separation of spectrum either it is occupied or unoccupied 
states by improving the detection accuracy. By integrating 
SVM with ENR and RBF kernel, it has achieved an 
outstanding performance in probability of detection, 
prediction accuracy, and computation time with 99.8%, 
99.2%, and a lightning-fast 1.6 seconds.  This combination 
leads to improve in detection accuracy, toughness to noise and 
generalization abilities by creating it a perfect result for SS 
applications. It is trained on preprocessed SS data and 
achieved high accuracy in detection probability, 
differentiating spectrum occupancy with enhanced robustness 
to noise and interference, so augmenting spectrum utilization 
in CRNs. In future, an ML based spectrum sensing model will 
be developed to maximize the sensing capabilities of each CR 
user and improve overall sensing efficiency of the entire 
CRNs.  
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