

# Implementation of Effective Controllers for Negative Output Super Lift Luo Converter in DC Micro Grid Application

S.Sam Karthik, Assistant Professor, Dhanalakshmi Srinivasan College of Engineering, Coimbatore,

Dr.A.Kavithamani, Assistant Professor, Coimbatore Institute of Technology, Coimbatore

**Abstract**— This article presents the modeling, simulation and design of effective controllers or dual loop controller for Negative Output Super Lift Luo Converters (NOESLLC) in continuous conduction mode (CCM) for DC microgrid application that are attractive owing to the inclusion of renewable energy sources. Owing to the small output voltage of these DC sources, super lift Luo Converters is essential to fix a DC source in DC microgrid. Traditional boost converter, buck converters, SEPIC and buck-boost converters have produced less voltage transfer gain and more ripples. With the aim to overcome these crisis's, NOESLLC is proposed for DC microgrid application. The load voltage and inductor current of the NOESLLC is regulated using effective controller loops. It consists of Proportional Integral (PI) controller acting as outer voltage loop for the load voltage regulation and P controller act as inner current loop to regulate the coil current. The dual loop controller for NOESLLC is verified by developing the MATLAB/SIMULINK model at different operating conditions.

**Index Terms**— Luo Converters, DC microgrid

## I. INTRODUCTION

IN current scenario, DC-DC converters play a vital role in various applications such as renewable energy, LED TV, battery charging, medical equipment, electric traction, electric vehicles etc., For these applications, it is essential to have good output voltage regulation, minimized current/voltage stresses, reduced ripples of voltage and current. Due to these constraints, many of the DC-DC converter topologies have been developed such as buck, boost, buck-boost, single ended primary inductance converter (SEPIC), KY converters and Luo-converters (LCs) [1-3]. Among these topologies, LCs being more suitable for high voltage applications show good voltage transfer ratio, good power density, reduced ripples of voltage and inductor current. The recently derived DC-DC LCs converters are discussed [4]. It has three techniques namely voltage lift, super lift and ultra-lift. In this paper, super lift technique (SLT) is used. The SLT increases the output voltage transfer gain in geometry progression. The SLT can be subdivided into (POSLC), (NOSLLC), cascaded POBC and cascaded NOBC respectively. The controller design is challenging one for LCs [5]. Therefore, in this article, the design of effective controllers for Negative Output Elementary Super Lift Luo Converter (NOESLLC) is investigated. The open loop study of cascaded boost converters has been reported in [6]. But, the efficiency of the same converter is around 78%. The design of parallel operation of cascaded boost converters with PI

controller is well reported in [7]. However, the ripple with this controller have produced 0.02V and efficiency of 95%. Also, verification is not carried out for different line and load variation using designed controllers. Small signal modelling analysis of traditional double boost converter and SEPIC have been addressed in [8].

The design of sliding mode controller (SMC) for a modified boost Cuk converter topology is well presented in [9]. But the experimental part is not analysed for designed converter using SMC. Also, ripples of same converter have produced around 0.9V during the simulation study. Multi-stage cascaded DC-DC converters for PV applications are well executed in [10]. In this article, only the simulation study has been carried out for the converter designed for solar system. Double loop control structure for boost converter is presented in [11]. The simulation analysis has been carried out for boost converter with SMC, PI and SMC plus PI at different operating conditions. Application for battery charging/discharging and fuel cell/solar system using SMC has been recorded in [12]. In this article, the complete simulation and the experimental analysis parts have been reported. A unified model of restructured conventional controllers such as buck, boost and buck-boost converter with its controller is reported in [13]. Dual classical linear control for boost converter has been addressed in [14]. However, the linear controllers are not capable to regulate the output voltage during large line variations.

Experimental analysis of novel SMC for DC-DC boost converter is well reported in [15]. Yet, the new SMC control law is discussed in this article. Multilevel cascaded converter with boosting technique is well reported in [16]. SMC and proportional double integral controller (PDIC) for many LCs topologies have been addressed in [17]-[20]. However, the controller implementation for these converters needs many mathematical calculations and more number of sensors. Fuzzy logic controller (FLC) is one of the intelligent or non-linear controller (NLC) structures [21]. FLC rules are arrived from system performance parameters and also, it is designed without mathematical modelling of the system which leads to reduced calculation and sensors. Design of FLC for various DC-DC converters has been recorded in [22]-[35]. Most of the research articles have not discussed dual loop controllers (DLC) for NOESLLC in continuous conduction mode (CCM). In this article, the design and implementation of DLC for NOESLLC in CCM has been carried out.

## II. OPERATION AND MODELLING OF NOESLLC

### A. Converter Operation

The power circuit diagram of the NOESLLC is shown in Fig.1. The proficient voltage step-up capability can be attained by controlling the power switch Q of the NOESLLC.

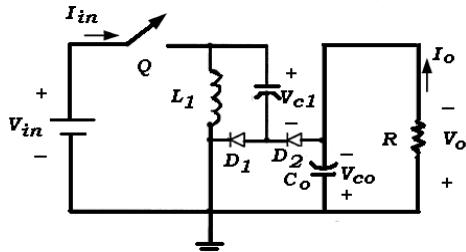



Fig. 1 Power circuit of NOESLLC

In the power circuit,  $V_{in}$  is a DC input supply voltage, Q is the power switch (n-channel MOSFET), and  $D_1$  and  $D_2$  are freewheeling diodes. Energy storage elements are capacitors ( $C_1$  and  $C_o$ ) and inductor  $L_1$ .  $V_o$  is the output voltage and R is the load resistance. It is assumed that all the components are ideal and in addition, the NOESLLC operates in CCM.

To study the operation of the NOESLLC, the circuit can be divided into two states, viz. the switch-ON state and the switch-OFF state. Fig.2 and Fig. 3 show the two states of operation of the NOESLLC as discussed by Fang Lin Luo and Hong Ye (Fang Lin Luo and Hong Ye, 2003).

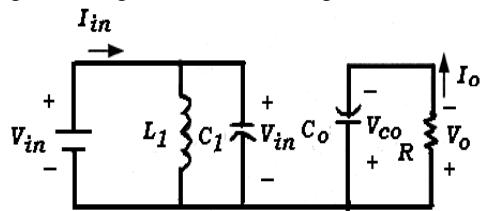



Fig. 2 Mode 1 operation of NOESLLC

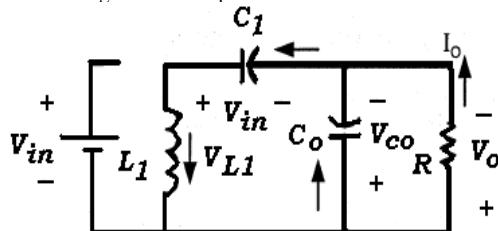



Fig. 3 Mode 2 operation of NOESLLC

In state 1 operation, the switch Q is in ON state, the diode  $D_1$  conducts. The capacitor  $C_1$  is charged by supply voltage  $V_{in}$  in short duration of time period and this capacitor voltage is assumed as a steady value. The current through the inductor ( $L_1$ ),  $i_{L1}$  rises due to  $V_{in}$ . The output capacitor,  $C_o$  provides the energy to the output load. The equivalent circuit of mode 1 operation of NOESLLC is illustrated in Fig. 2.

During the state 2 operation, switch Q is in OFF state, diode  $D_2$  conduct and hence, the inductor current decays with the  $C_1$  voltage ( $V_o - V_{in}$ ) to provide the energy to  $C_o$  and load branch. The equivalent circuit of NOESLLC in mode 2 is shown in Fig.3. The ripple of the inductor current  $i_{L1}$  may be written as

$$\Delta i_{L1} = \frac{V_{in}}{L_1} dT = \frac{V_o - V_{in}}{L_1} (1-d)T \quad (1)$$

Where d is the duty cycle and T is time period. The voltage transfer gain is

$$G = \frac{V_o}{V_{in}} = \frac{2-d}{1-d} - 1 \quad (2)$$

In constant state, the average charges across capacitor,  $C_o$  in a period should be zero and it can be expressed as

$$\begin{aligned} dT i_{Co-on} &= (1-d) T i_{Co-off} \\ i_{Co-on} &= I_o \end{aligned} \quad (3)$$

Where  $i_{Co-on}$  is  $C_o$  current during on state and  $i_{Co-off}$  is  $C_o$  current during off state. The variation ratio of inductor current is

$$\xi = \frac{\Delta i_{L1/2}}{i_{L1}} = \frac{d(1-d)TV_{in}}{2L_1 I_o} = \frac{d(1-d)}{G} \frac{R}{2f_s L_1} \quad (4)$$

The ripple voltage of output voltage,  $V_o$  is

$$\Delta V_o = \frac{\Delta Q}{C_o} = \frac{I_o(1-d)T}{C_o} = \frac{(1-d)}{f_s C_o} \frac{V_o}{R} \quad (5)$$

Therefore, the variation ratio of output voltage is

$$\xi = \frac{\Delta V_o / 2}{V_o} = \frac{(1-d)}{2Rf_s C_o} \quad (6)$$

As seen, the voltage transfer gain for a single stage is more than that obtained for classical converters that can be clearly observed in the graphical representation diagram in Fig.4.

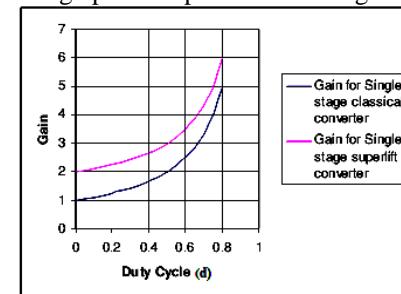



Fig. 4 Comparison of voltage transfer gain for NOESLLC and classical converter

### B. Modelling of Converter

From the Fig.2, the state-space equation of it can be engraved as (7)

$$\begin{cases} L_1 \frac{di_{L1}}{dt} = V_{in} \\ C_o \frac{dV_o}{dt} = -\frac{V_o}{R} \end{cases} \quad \text{Switch -ON} \quad (7)$$

From the Fig. 3, the state-space equation is written as (8)

$$\begin{cases} L_1 \frac{di_{L1}}{dt} = V_{in} - V_o \\ C_o \frac{dV_o}{dt} = i_{L1} - \frac{V_o}{R} \end{cases} \quad \text{Switch -OFF} \quad (8)$$

Using the capacitor charge balance rule on  $C_1$ , the whole switching time period is obtained from the equation (9), where  $d$  is the status of the switch ( $d = 1$  when the switch is ON, and  $d = 0$  when the switch is OFF).

$$\text{Switching time} = dC_1 \frac{dV_{C1}}{dt} + (1-d)i_{L1} \quad (9)$$

By choosing the state space variables of converter (say inductor current and output voltage). By using (7)–(9), the state-space average modeling of the NOESLLC can be written as (10)

$$\begin{bmatrix} i_{L1} \\ V_o \end{bmatrix} = \begin{bmatrix} 0 & -\frac{1-d}{L_1} \\ \frac{1-d}{C_o} & -\frac{1}{RC_o} \end{bmatrix} \begin{bmatrix} i_{L1} \\ V_o \end{bmatrix} + \begin{bmatrix} \frac{1}{L_1} \\ 0 \end{bmatrix} V_{in} \quad (10)$$

$$A = \begin{bmatrix} 0 & -\frac{1-d}{L_1} \\ \frac{1-d}{C_o} & -\frac{1}{RC_o} \end{bmatrix},$$

$$B = \begin{bmatrix} \frac{1}{L_1} \\ 0 \end{bmatrix},$$

$$C = [0 \ 1],$$

$$D = 0 \quad (11)$$

Where,  $A$ ,  $B$ ,  $C$  and  $D$  are averaged state-space matrices of NOESLLC.

### C. Design Computation of the NOESLLC Circuit Components

The NOESLLC elements are designed with the following specifications as shown in Table 1.

### III. OPEN LOOP SIMULATION ANALYSIS OF THE NOESLLC

In this section the design of NOESLLC in open loop is discussed. The MATLAB/Simulink model of NOESLLC is simulated as per the specification listed in Table 1.

TABLE I  
SPECIFICATIONS OF NOESLLC

| Symbol          | Parameter Name              | Value                      |
|-----------------|-----------------------------|----------------------------|
| $V_{in}$        | Input Voltage               | 12V                        |
| $V_o$           | Output Voltage              | -36V                       |
| $L_1$           | Inductor                    | 100 $\mu$ H                |
| $C_1, C_o$      | Capacitors                  | 30 $\mu$ F                 |
| $f_s$           | Nominal switching frequency | 100kHz                     |
| $R$             | Load resistance             | 50 $\Omega$ -60 $\Omega$ - |
| $P_o$           | Output power                | 25.92W                     |
| $P_{in}$        | Input power                 | 28.236W                    |
| $I_{in}$        | Input current               | 2.353A                     |
| $\eta$          | Efficiency                  | 91.8%                      |
| $I_o$           | Output current              | -0.72 A                    |
| $d$             | Duty cycle                  | 0.667                      |
| $\Delta V_o$    | Capacitor ripple voltage    | -0.16V                     |
| $\Delta i_{L1}$ | Inductor ripple current     | 0.6A                       |

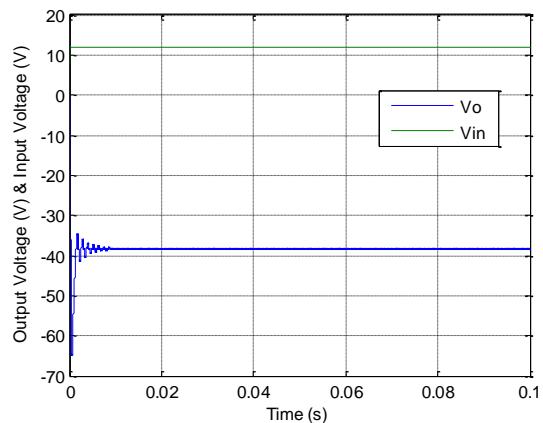



Fig 5 Transient response of NOESLLC without controller

The fig. 5 shows the variation of input voltage and output voltage with respect to time for normal operating condition i.e without any disturbance to the system. Even without any disturbance it has an initial peak overshoot of about -28V large output voltage ripple is visible very clearly.

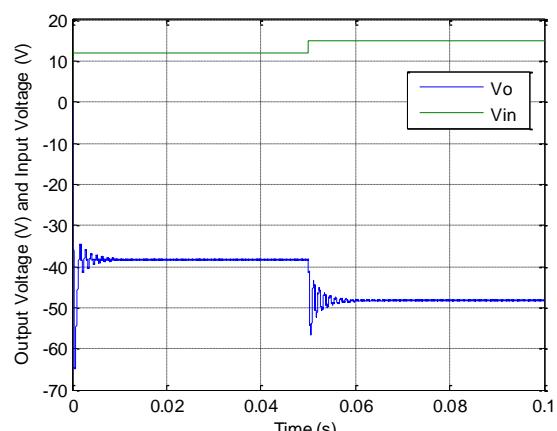



Fig 6 Input voltage variation of NOESLLC without Controller

With line variation from 12V to 15V the output voltage is disturbed and a very large overshoot is seen. This means that the output voltage is not in regular form as shown in fig.6.

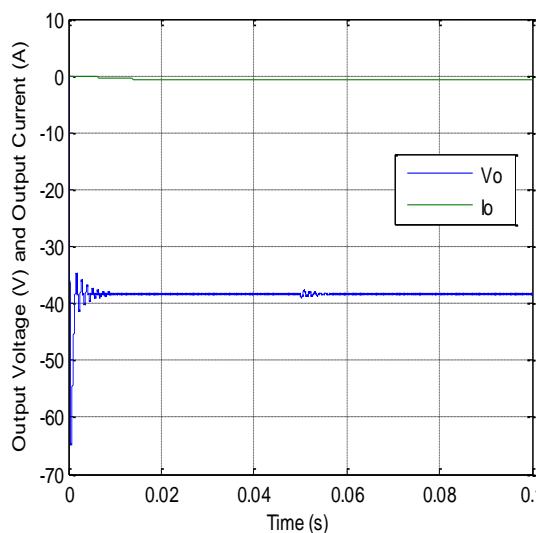



Fig. 7 Output Voltage when load changes from 50 to 60 Ohms

This open loop NOESLLC output voltage is also affected by the sudden change in load due to unexpected change of variation system disturbance. In general the experts mention this change of system parameters as parasitic effect. One such kind is load disturbance which viewed in the below fig.8 with sudden change in load from 50 ohms to 60 ohms. On seeing the fig 8 the output voltage is disturbed with small overshoot and change in output voltage.

From fig.8 the output power=26.34 W, input power=28.86 W and the maximum efficiency of 91.27% for NOESLLC under normal operation condition without use of any feedback controller.

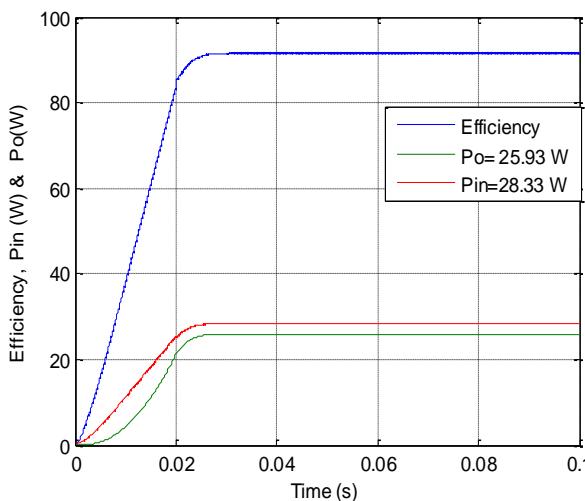



Fig. 8.  $\eta$ , i/p and o/p Power of NOESLLC without controller

#### IV. DESIGN OF DUAL LOOP CONTROLLER FOR NOESLLC

This section deals about the dual controller design for NOESLLC to regulate the output voltage and inductor current. A PI controller is chosen for providing the better output voltage regulation in NOESLLC. The DC output voltage is sensed and compared with reference output

voltage, and error signal is obtained. This error signal is processed by the PIC to maintain the output voltage constant. The PIC parameters, proportional gain ( $K_p$ ) and integral times ( $T_i$ ), are obtained by using Zeigler – Nichols tuning method.

The transfer function (T.F) model of equation (11) is obtained from the state space average model of equation (12) using MATLAB. Then,

$$T.F = \frac{-7.958e^{-12} s^2 + 1.667e^8 s + 1.389e^{12}}{s^3 + 666.7 s^2 + 8.333e^7 s} \quad (12)$$

For simplicity in the design aspect, the term  $-7.958e^{-12}s^2$  in the numerator of the T.F model is very small and hence it can be neglected. Therefore, the T.F becomes

$$T.F = \frac{1.667e^8 s + 1.389e^{12}}{s^3 + 666.7 s^2 + 8.333e^7 s} \quad (13)$$

The characteristics equation with proportional control is expressed by

$$s^3 + 666.7 s^2 + s (8.333e^7 + K 1.667e^8) + K 1.389e^{12} = 0 \quad (14)$$

The Routh array of equation (14) is

$$s^3 : 1 \quad (8.333e^7 + 1.667e008 K)$$

$$s^2 : 666.7 \quad 1.389e^{12} K$$

$$s^1 : (-8.333e^7 + 2247116969 K)$$

$$s^0 : 1.389e^{12} K$$

From this routh array, the range of K for stability is  $(-8.333e^7 + 2247116969 K) > 0$ ,  $K > 0.037$ ,  $0 < K < 0.037$ . So, the ultimate critical gain  $K_{cr} = 0.037$ , and their corresponding  $\omega_n = 210447$  rad/sec and  $P_{cr} = 2\pi\omega_n = 2.9856e^5$ .

After tuning the controller using this method, the NOESLLC reaches expected steady state with few oscillations, where the ultimate gain for stability can be found as  $K_{cr}=0.02$  and their corresponding ultimate period as  $P_{cr}=0.0012s$ . Using this method the values of  $K_p=0.01105$  and  $T_i=0.01233s$  are determined.

#### V. SIMULATION, RESULTS AND DISCUSSION

This section briefly describes the implementation of dual loop controller for NOESLLC in DC micro grid application. The output voltage is compared with the reference voltage and the error  $e_1$  is fed to the PI controller. Reference currents are generated using the output of the PI controller. The instantaneous values of actual current and reference current are compared and the error is found to be  $e_2$ . The inputs to the P controller are voltage error  $e_1$  and the current error  $e_2$ . The output  $u$  is the control signal, which in turn sets the new duty ratio of the switching pulses for triggering the switch of the NOESLLC.

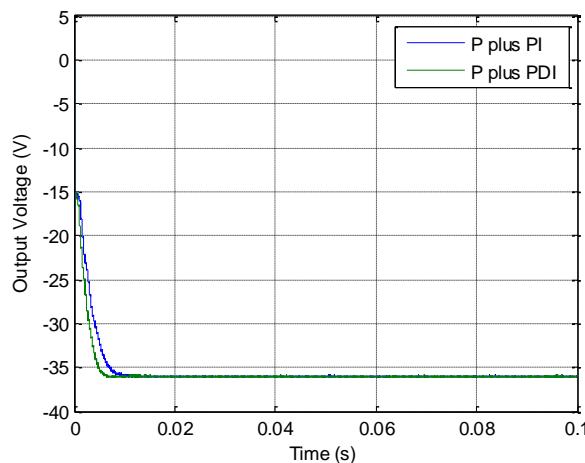



Fig.9 Simulated output and input voltage responses of NOESLLC in transient region using dual loop controller

Fig. 9 shows the simulated output voltage and input voltage for NOESLLC in DC micro grid application using dual loop controller. It is found that output voltage response of the same converter using controller has produced null overshoots and quick settling time.

#### A. Line Variation

Fig. 10 show the simulated output voltage and input voltage responses of this converter using designed controller for input voltage change from 12V to 15V. From this results, it is found that the output voltage response of this converter has produced 4V peak overshoots and settling time of 0.01s.

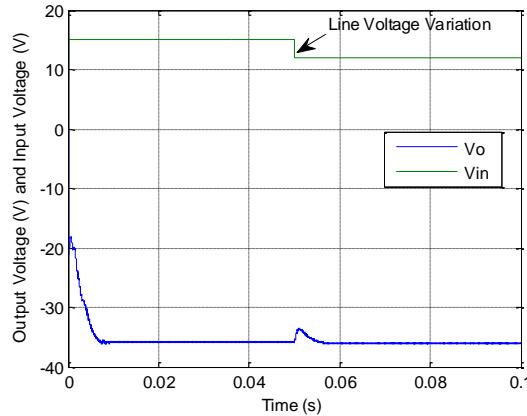
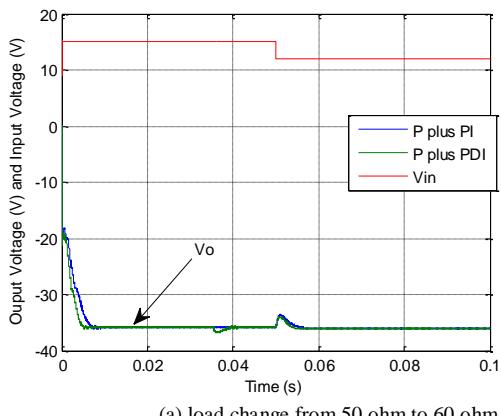




Fig.10 Simulated output voltage response for NOESLLC with dual loop controller during line variation

#### B. Load Variation



(a) load change from 50 ohm to 60 ohm

Fig. 11 shows the simulated output voltage and load current responses of this converter using designed controller for load change from 50 ohm to 60 ohm. From these results, it is found that the output voltage response of this converter has produced 2V peak overshoots and settling time of 0.005s.

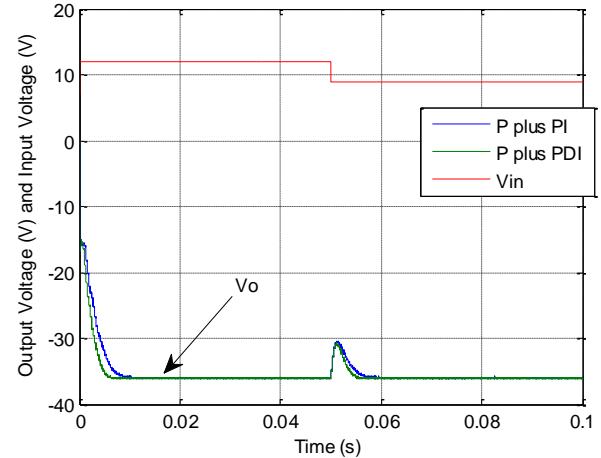



Fig.11 Simulated output voltage response for NOESLLC with dual loop controller during load variation

#### C. Circuit Components Variations

The circuit parameters such as inductance and output capacitance is varied for the NOESLLC along with the closed loop controller is shown in the fig 12 and fig 13 for certain time interval.

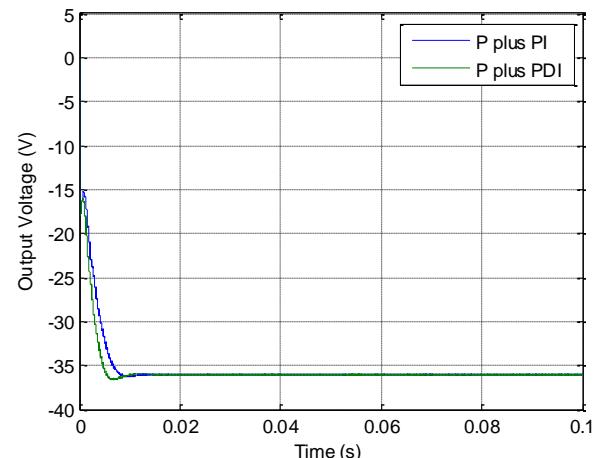
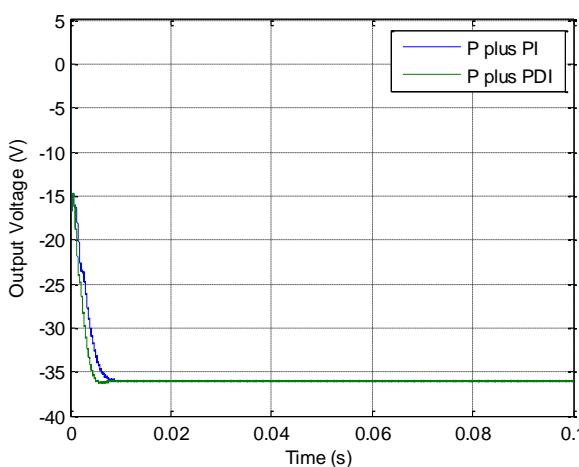




Fig 12. Regulated o/p voltage when  $C_o$  changes from 30 to 80  $\mu$  F

The fig 12 shows the regulated output voltage when the output capacitance changes from 30 to 80  $\mu$  F. Its output voltage and output current does disturbed because of the usage of the closed loop controller for a particular line voltage.

Fig 13. Regulated o/p voltage when L changes from 100 to 200  $\mu$  H

Similarly fig. 13 shows the regulated output voltage for the input inductance changes from 100 to 200  $\mu$  H. Its output voltage and output current is disturbed because dual loop controller for NOESLLC for a particular line voltage.

#### D. Steady State Region

For a particular line voltage the fig 14, shows output capacitor and inductor current ripple of NOESLLC using designed controller.

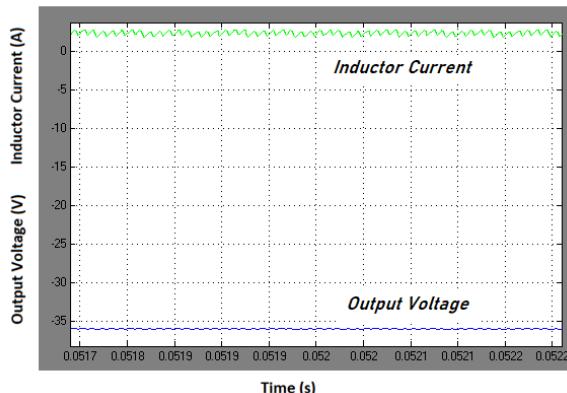



Fig 14. Output capacitor voltage ripple for NOESLLC with dual controller

For the certain range of load resistance the efficiency is plotted for NOESLLC with controller for line voltage 12V with no circuit parameter variation as shown in fig 15.

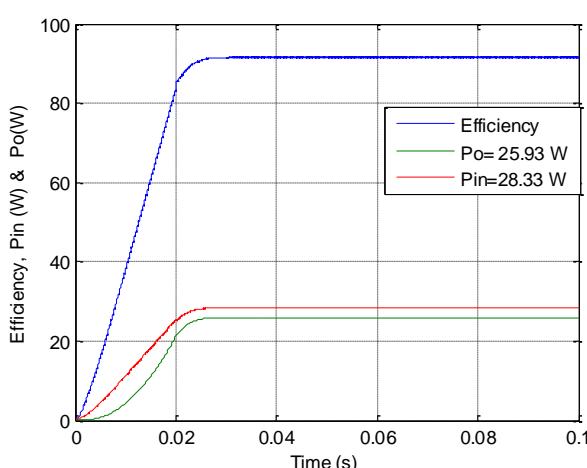



Fig 15. Percentage efficiency for various load change of NOESLLC with controller

The input voltage Vs output voltage of NOESLLC with controller is depicted in the fig.16 which is having negligible overshoot.

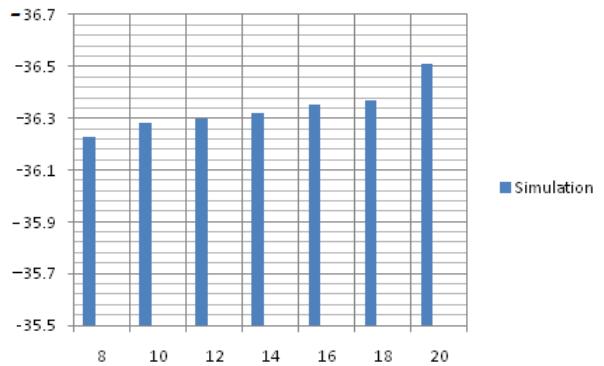



Fig 16. Input voltage vs output voltage

The results obtained from different variation in line and load are shown in table II

TABLE II  
RESULT COMPARISON

|                                                |           | P plus PI | P plus PDI |
|------------------------------------------------|-----------|-----------|------------|
| Start up-Region                                | $M_p$     | -         | -          |
|                                                | $T_s$ (s) | 0.01      | 0.008      |
| Line Variations<br>$V_{in}=12V$ to 09V         | $M_p$     | -4.5V     | -4V        |
|                                                | $T_s$ (s) | 0.008     | 0.0065     |
| Line Variations<br>$V_{in}=12V$ to 15V         | $M_p$     | -4.5V     | -4V        |
|                                                | $T_s$ (s) | 0.008     | 0.0065     |
| Load Variations<br>$R=50\Omega$ to 40 $\Omega$ | $M_p$     | -2.2V     | -2V        |
|                                                | $T_s$ (s) | 0.008     | 0.005      |
| Load Variations<br>$R=50\Omega$ to 60 $\Omega$ | $M_p$     | -2.2V     | -2V        |
|                                                | $T_s$ (s) | 0.008     | 0.005      |

## VI. CONCLUSIONS

Thus the modeling, simulation and design of dual loop controller of NOESLLC for DC micro grid application have been successfully demonstrated in MATLAB/Simulink software platform. Dual loop consist of PI controller (outer loop) and P controller (inner loop) and its parameters are computed using Ziegler-Nichols tuning method. Many simulation results are presented to prove the proficient of the designed controller. It is more suitable for DC micro grid application and for low power application such as power supply for various medical equipments, communication system, computer hardware parts and industrial application.

## REFERENCES

- [1] Zhu. M., Luo.F.L., "Implementing of developed voltage lift technique on SEPIC, CUK and double-output DC-DC converters", *IEEE Trans. Ind. Electron. Appl.*, Vol. 23, No. 25, pp. 674–681, 2007.
- [2] M. Jinno, P. Y Chen, Y. C. Lai, and K. Harada, "Investigation on the ripple voltage and the stability of synchronous rectifier buck converters with high output current and low output voltage", *IEEE Trans. Ind. Electron.*, Vol. 57, No. 3, pp. 1008-1016, 2010.
- [3] J. A. Morales-Saldana, R. Galarza-Quirino, J. Leyva-Ramos, E. E. Carbajal-Gutierrez and M. G. Ortiz-Lopez, "Modeling and control of a cascaded boost converter with a single

switch", *IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics*, pp. 591-596, 2006.

[4] Luo, F.-L., Hong Ye, "Advanced DC/DC converters", CRC Press, London, 2006.

[5] F.J perez-Pinal and I. Cervantes, "Multi-objective control for cascade boost converter with single active switch", *2009 IEEE International Electric Machines and Drives Conference*, pp. 1858-1862, 2009.

[6] F. L. Luo, H. Ye, "Positive output cascade boost converters", in *IEE Proceedings - Electric Power Applications*, Vol. 151, No. 5, pp. 590-606, 2004.

[7] Davood Ghaderi, Mehmet Çelebi, "Implementation of PI controlled cascaded boost power converters in parallel connection with high efficiency", *Journal of Electrical Systems*, Vol. 13, No.2, pp. 307-321, 2017.

[8] Pinaa, P. Ferrãoa, J. Fournierb., B. Laca, "Small signal modeling of a DC-DC type double boost converter integrated with SEPIC converter using state space averaging approach", *Energy Procedia*, Vol. 117, pp. 835-846, 2017.

[9] Sanjeevikumar Padmanaban, Emre Ozsoy, Viliam Fedák and Frede Blaabjerg, "Development of sliding mode controller for a modified boost Cuk converter configuration", *Energies*, Vol.10, No.1513, 2017.

[10] Ahmed A. A.Hafez, "Multi-level cascaded DC/DC converters for PV applications", *Alexandria Engineering Journal*, Vol.54, No. 4, pp. 1135-1146, 2015.

[11] Ayhan Ozdemir, Zekiye Erdem, "Double-loop PI controller design of the DC-DC boost converter with a proposed approach for calculation of the controller parameters", *Systems and Control Engineering*, Vol. 232, No. 2, pp. 137-148, 2018.

[12] Sergio Ignacio Serna-Garcés, Daniel González Montoya and Carlos Andrés Ramos-Paja, "Control of a charger/discharger DC/DC converter with improved disturbance rejection for bus regulation", *Energies*, Vol. 11, No. 594, 2018.

[13] Martín Antonio Rodríguez Licea, Francisco Javier Perez Pinal, Alejandro Israel Barranco Gutiérrez, Carlos Alonso Herrera Ramírez, and Jose Cruz Nuñez Perez, "A reconfigurable buck, boost, and buck-boost converter: unified model and robust controller", *Mathematical Problems in Engineering*, Vol. 1, pp. 1-8, 2018.

[14] Charabi Asma, Zaidi Abdelaziz and Zanzouri Nadia, "Dual loop control of DC-DC boost converter based cascade sliding mode control", *International Conference on Green Energy Conversion Systems( GECS)*, 2017.

[15] K. Ramash Kumar, "Variable frequency based sliding Model control for positive output elementary boost converter", *Journal of Advanced Research in Dynamical and Control Systems* , Vol. 9, pp.1125-1142, 2017.

[16] P. Wiatr and A. Kryński, "Model predictive control of multilevel cascaded converter with boosting capability – experimental results", *Bulletin of the polish academy of sciences technical sciences*, Vol. 65, No. 5, pp. 589-599, 2017.

[17] K. Ramash Kumar, "Implementation of sliding mode controller plus proportional integral controller for negative output elementary boost converter", *Alexandria Engineering Journal* , Vol. 55, No. 2, pp. 1429-1445, 2016.

[18] R. Kalaivani, K. Ramash Kumar, S. Jeevananthan, "Implementation of VSBSCM plus PDIC for fundamental positive output super lift-Luo converter", *Journal of Electrical Engineering*, Vol. 16, No. 4, pp. 243-258, 2016.

[19] K. Ramash Kumar, S. Jeevananthan, "Analysis, Design and Implementation Of Hysteresis modulation sliding mode controller for negative output elementary boost converter", *Journal of Electric Power Components and Systems*, Vol. 40, No. 3, pp. 292-311, 2012.

[20] Kuppan Ramash Kumar, Seenithangam Jeevananthan, "Sliding mode control design for current distribution control in Paralleled Positive Output Elementary Super Lift Luo Converters", *Journal of Power Electronics*, Vol. 11, No. 5, pp. 639-654, 2011.

[21] J. Gayathri Monicka, Dr. N.O.Guna Sekhar, K. Ramash Kumar, "Performance evaluation of membership functions on fuzzy logic controlled AC voltage controller for speed control of induction motor drive", *International Journal of Computer Applications*, Vol. 13, No. 5, pp. 8-12, 2011.

[22] K. Ramash Kumar, S. Jeevananthan, S. Ramamurthy "Improved performance of the positive output elementary split inductor-type boost converter using sliding mode controller plus fuzzy logic controller", *Wseas Transactions on Systems and Control*, Vol. 9, pp. 215-228, 2014.

[23] S. Vijayalakshmi and T. Sree Renga Raja, "Time Domain Based Digital Controller for Buck-Boost Converter", *Journal of Electrical Engineering & Technology*, Vol. 9, No. 5. pp. 1551-1561, 2014.

[24] Arunkumar, T.S. Sivakumaran, K. Ramash Kumar, "Improved performance of linear quadratic regulator plus fuzzy logic controller for positive output super lift Luo-converter", *Journal of Electrical Engineering*, Vol. 16, No. 3, pp. 397-408, 2016.

[25] K. Ramash Kumar, D.Kalyankumar, DR.V.Kirbakaran "An hybrid multi level inverter based DSTATCOM control", *Majlesi Journal of Electrical Engineering*, Vol. 5. No. 2, pp. 17-22, 2011.

[26] K. Ramash Kumar, S. Jeevananthan, "PI control for positive output elementary super lift Luo converter", *World Academy of Science, Engineering and Technology*, Vol. 3, No. 3, pp. 130-135, 2010.

[27] S. Padma, Dr. R. LakshmiPathi, K. Ramash Kumar and C. P. Nandagopal, "A PI controller for enhancing the transient stability of multi pulse inverter based Static Synchronous Series Compensator (SSSC) with Superconducting Magnetic Energy Storage (SMES)", *World Academy of Science, Engineering and Technology*, Vol. 3, No. 3, pp. 136-142, 2010.

[28] P. Sivakumar, V. Rajasekaran, K. Ramash Kumar, "Investigation of intelligent controllers for varibale speeed PFC buck-boost rectifier fed BLDC motor drive", *Journal of Electrical Engineering*, Vol. 17, No. 4, pp. 459-471, 2017.

[29] J. A. Morales-Saldana, R. Galarza-Quirino, J. Leyva-Ramos, E. E. Carballo-Gutierrez and M. G. Ortiz-Lopez, "Modeling and control of a cascaded boost converter with a single switch", *IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics*, pp. 591-596, 2006.

[30] Augusti Lindiya, Dr.S.Palani, Iyyappan, "Performance comparison of various controllers for DC –DC synchronous

buck converter”, *Elsevier, Procedia Engineering* 38, pp. 2679-2693, 2012.

- [31] Liviu Dinca, Jenica-Ileana Corcău, “PI versus fuzzy control for a DC to DC boost converter”, *International Symposium on Power Electronics, Electrical Drives, Automation and Motion*, pp. 803-808, 2016.
- [32] Muhammad Mujtaba Asad, Razali Bin Hassan, Fahad Sherwani, “An analytical comparison between open loop, PID and fuzzy logic based DC-DC boost converter”, *International Journal of Electronics and Communication Engineering*, Vol. 8, No.11, pp. 1787-1792, 2014.
- [33] Gaurav, Amrit Kaur, “Comparisons between conventional PID and fuzzy logic controller for liquid flow control”, *International Journal of Innovative Technology and Exploring engineering*, Vol. 1, No. 1, pp. 84-88, 2012.
- [34] Chetan P. Ugale, R.B. Dhumale, V.V. Dixit “DC - DC converter using Fuzzy logic controller”, *International Research Journal of Engineering and Technology*, Vol. 2, No. 4, pp. 593-596, 2015.
- [35] Sandip Apte, Ashfaque Khan, “Study of interleaved boost converter controlling techniques”, *International Research Journal of Engineering and Technology*, Vol. 4, No. 4, pp. 987-992, 2017.