

Deep Learning for Driver Vigilance and Road Safety

Publisher: IEEE

[Cite This](#)Priyanka Kaushik ; Khushbu Yadav ; Sincija C ; B.S. Gopika ; Narendra Kumar ; Manas Manglik Kaushik [All Authors](#)1
Cites in
Paper45
Full
Text Views

Abstract

Document Sections

I. Introduction

II. Survey Of Literature

III. Methodology

IV. Algorithm Steps And Implementation

V. RESULT

[Authors](#)[Figures](#)[References](#)[Citations](#)[Keywords](#)[Metrics](#)[More Like This](#)

Abstract:

AI Sentinel is a groundbreaking project aimed at revolutionizing road safety through the use of cutting-edge deep learning technology to enhance driver awareness. Given the significant role of driver drowsiness in road accidents, there is an urgent need for efficient real-time detection systems for preventive measures. This paper introduces a novel Python-based system for detecting driver drowsiness, leveraging the OpenCV library for Face Eye Detection implementation. By focusing on the color characteristics of the face and utilizing a camera to capture facial expressions, the system identifies signs of fatigue. OpenCV, known for its prowess in computer vision tasks, is the primary technology employed in this system, enabling accurate detection of drowsiness indicators, particularly in the eyes. The system's real time functionality ensures prompt responses to the driver's condition, effectively mitigating the risk of accidents. Through meticulous analysis of facial characteristics, the system can detect subtle changes indicative of drowsiness, issuing timely warnings to the driver to stop or take a break, thus reducing the likelihood of accidents. The proactive design of the system makes it a valuable tool for enhancing traffic safety. Experimental results validate the effectiveness of the proposed approach in accurately detecting driver drowsiness and delivering real-time notifications, underscoring its potential to significantly reduce traffic incidents caused by fatigued drivers. The practical relevance of the system in addressing road safety challenges is emphasized by its ability to identify drowsiness and issue timely warnings, positioning it as a proactive solution to minimize road accidents caused by inattentive driving. Overall, this study contributes to advancing traffic safety by introducing a reliable method for real-time detection of drowsy driving, leveraging colorful facial traits analysis and OpenCV technology integrated with Python programming.

[Show More](#)

Published in: [2024 4th International Conference on Advancement in Electronics & Communication Engineering \(AECE\)](#)

Date of Conference: 22-23 November 2024

DOI: [10.1109/AECE62803.2024.10911776](https://doi.org/10.1109/AECE62803.2024.10911776)

Date Added to IEEE Xplore: 13 March 2025

Publisher: IEEE

ISBN Information:

Conference Location: GHAZIABAD, India

Sign in to Continue Reading

[Authors](#)[Figures](#)[References](#)[Citations](#)[Keywords](#)[Metrics](#)

[< Previous](#) | [Back to Results](#) | [Next >](#)**IEEE Personal Account**[CHANGE
USERNAME/PASSWORD](#)**Purchase Details**[PAYMENT OPTIONS](#)
[VIEW PURCHASED
DOCUMENTS](#)**Profile Information**[COMMUNICATIONS
PREFERENCES](#)
[PROFESSION AND
EDUCATION](#)
[TECHNICAL INTERESTS](#)**Need Help?**US & CANADA: +1 800
678 4333
WORLDWIDE: +1 732
981 0060**Follow**[f](#) [@](#) [in](#) [y](#)[About IEEE Xplore](#) | [Contact Us](#) | [Help](#) | [Accessibility](#) | [Terms of Use](#) | [Nondiscrimination Policy](#) | [IEEE Ethics Reporting](#) | [Sitemap](#) | [IEEE Privacy Policy](#)

A public charity, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

© Copyright 2025 IEEE - All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies.