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Energy Management (EM) in hybrid Microgrids (MGs) is essential for coordinating Renewable Energy 
Sources (RESs) and Hybrid Energy Storage Systems (HESSs) to ensure Power Quality (PQ), stable 
operation, and efficient power flow. Existing optimization–prediction approaches often address these 
issues in isolation or require high computational overhead, limiting their real-time applicability. To 
overcome these challenges, this paper proposes a novel dual-optimization framework combining 
the Artificial Lemming Algorithm (ALA) with the Temporal Kolmogorov–Arnold Network (TKAN), 
referred to as ALA-TKAN. Unlike conventional methods, ALA-TKAN integrates metaheuristic-
based optimization of power flow and HESS scheduling with sequence-aware forecasting of load 
and renewable generation, enabling proactive and coordinated EM under dynamic conditions. 
Implemented in MATLAB, the proposed method demonstrates superior performance compared 
with state-of-the-art techniques such as PDO-MACNN, BWO, PSO, ANN, and MRA-FLC, achieving 
minimal power loss (2.9 MW), highest efficiency (99.2%), lowest energy cost (0.8 $/Wh), and reduced 
THD (1.4%). These results confirm the novelty and practical potential of ALA-TKAN as a unified, 
computationally efficient strategy for PQ enhancement and reliable operation of hybrid MGs.

Keywords  Diesel generator, Energy management, Hybrid energy storage system, Microgrid, Photovoltaic, 
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Background
The growing demand for clean and sustainable energy has led to the increased integration of RESs such as wind 
and solar into modern power systems1. These are ecologically friendly sources and they aid in the reduction of 
reliance on fossil fuels thus leading to reduced greenhouse gases emissions2. The diversity and intermittency 
of the RESs however usually renders fluctuations in power that can threaten PQ and grid stability. In order to 
curb these impacts and have a secure supply of power, an alternative viable option is the use of hybrid MGs, 
which integrates RESs and Energy Storage Systems (ESSs)3,4. The most frequently used energy imbalance control 
is instigated by the HESS, which basically consists of battery ESS and Fuel Cells (FCs) among other storage-
supporting technologies5. Although battery ESS units have favorable opportunity in storing excess supply and 
providing long periods of supply, FCs have constant output power and have the properties to supplement the 
system at prolonged times of low output of production6,7. Battery ESS and FC combination increases flexibility 
and responsiveness of MG operations that leads to stability of voltages and frequency8. Proper integration of RESs 
and HESS contribute towards mitigation of PQ issues which include fluctuations in voltages and loads as well as 
deviations of frequency9,10. EM is found to be vital in the control of power flow between generation units, energy 
storage entities, and the loads that are connected in the system of hybrid MGs. These plans offer to make sure 
that energy resources at hand are used efficiently and that the system is also reliable11. EM facilitates the more 
stable delivery of power with its allocation of load reliefs and intermittence of generation. It also allows smooth 
switching between grid and island modes in case of disturbance12,13. PQ standards can also be sustained in 
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different operational situations with correct energy scheduling and load prioritization. The synergy of RESs, and 
HESS, especially through FC integration, contributes toward reducing interruptions and can enhance long-term 
energy viability14. Therefore, hybrid MGs with coordinated RES and FC-based HESS present an opportunity of 
developing a stable and efficient power distribution network15.

Recent research reinforces these perspectives by advancing optimization and control strategies. For instance, 
GTOA-ACNN has been employed for energy hub management with RES integration, while CMBO-PCSANN-
based PI controller tuning has been applied to PV-fed grids for PQ improvement16,17. Other studies have 
explored multiple MGs with EV charging under a GJO-PCGAN framework, hybrid wind–pumped hydro–
CAES–fuel cell configurations for techno-economic evaluation, and EV performance enhancement through 
buck–boost converter integration18–20. Additionally, graph- and neural-based methods have been proposed for 
PQ enhancement and voltage regulation in DC MGs and distribution systems, while reconfigurable PV–wind 
MGs have been optimized for dispatch strategies21–24. Collectively, these advancements demonstrate that hybrid 
optimization and intelligent control significantly enhance reliability, PQ, and sustainability in renewable-based 
power systems.

Literature survey
Various studies have explored energy management (EM) strategies for power quality (PQ) improvement in 
microgrids (MGs) with renewable energy sources (RES) and hybrid energy storage systems (HESS), employing 
diverse technological approaches. This section reviews key contributions in this area. A study25 proposed a hybrid 
PDO-MACNN algorithm for grid-free HRES power management in a HESS. In this method, the three-phase 
inverter controller parameters were optimized using PDO, while MACNN was employed to capture multi-scale 
temporal and spatial data. The approach minimized total harmonic distortion (THD), balanced active power 
between generation and load, and maintained the DC-link voltage within predefined limits through regulated 
charging and discharging. An EM power distribution strategy for a DC MG integrating photovoltaic (PV) arrays, 
proton exchange membrane fuel cells (PEMFC), lithium-ion batteries, and supercapacitors (SC) was presented 
in26. This method was based on the Black Widow Optimization (BWO) algorithm combined with the Equivalent 
Consumption Minimization Strategy (ECMS). The scheme not only enhanced system efficiency and reduced 
hydrogen consumption but also ensured equitable energy sharing among the components.

A PSO-based approach27 was introduced for improving the performance of a HESS consisting of 
batteries, SCs, hydrogen fuel cells, and PV systems. By optimizing the parameters of a proportional-integral 
(PI) controller, the technique effectively regulated fuel flow rates, hydrogen utilization, and system stability, 
ensuring coordinated operation of all HESS elements. ANN-based EM28 was investigated in DC MGs with HESS 
comprising batteries and SCs connected via a bidirectional converter. The ANN controller enabled optimal load 
distribution, maintained balanced state of charge (SoC) levels, and stabilized the voltage profile under variable 
PV generation conditions, while allowing dynamic energy exchange. A hybrid control strategy combining ANN 
and PI controllers29 was explored for a DC MG integrating fuel cells, batteries, and SCs. This method maintained 
DC bus voltage stability, improved dynamic response, reduced battery stress, and extended the lifecycle of 
storage elements by enabling synchronized HESS operation under varying load demands.

A hybrid MRA-FLC approach30 was proposed for EM in DC MGs supporting electric vehicle (EV) charging. 
The method ensured sustainable energy supply, minimized emissions, and protected storage devices against 
premature degradation by balancing power output between RESs and battery storage, ultimately enhancing 
resource efficiency, environmental sustainability, and system reliability. An intelligent EM system31 was designed 
using a NARMA-L2 ANN model for MGs integrating PV, wind, and HESS with batteries and SCs. The system 
incorporated MPPT for PV based on NARX, and power allocation considered load demand, renewable output, 
and battery SoC. This approach reduced stress on batteries, ensured balanced energy allocation, and stabilized 
the DC bus voltage.

A PV-HESS MG stabilization system32 was developed with a lead-acid battery and SC combination. A 
PI controller, optimized using three metaheuristic algorithms—Wild Horse Optimizer (WHO), Artificial 
Ecosystem-Based Optimization (AEO), and PSO—was applied to regulate the DC bus voltage. An EM strategy 
coordinated power flow among storage devices and managed MG connectivity, ensuring reliable operation 
across different load and generation scenarios. A comparative analysis of EM techniques for PQ improvement 
in MGs integrated with RES and HESS is presented in Table 1. Recently, advanced hybrid optimization–AI 
methods have also been explored for microgrid energy management. Reinforcement learning (RL)-based 
controllers can adaptively learn scheduling strategies under uncertain renewable and load conditions, improving 
resilience in real time. Similarly, physics-informed neural networks (PINNs) integrate system physics into neural 
architectures, enabling faster convergence and improved generalization in dynamic microgrid scenarios. These 
techniques offer promising results; however, they often demand high computational resources and large-scale 
training data, which can limit their deployment in real-time microgrid control.

Research gap and motivation
Despite these advances, there remains a lack of comprehensive EM strategies that holistically minimize power 
loss, reduce THD, lower energy cost, and improve conversion efficiency, while simultaneously ensuring voltage 
and frequency stability under dynamic operating conditions. Existing methods often lack the integration of 
forecasting with optimization, resulting in suboptimal or delayed responses to rapid system changes. To 
address this gap, this work proposes a novel dual-optimization EM framework that integrates the Artificial 
Lemming Algorithm (ALA) for optimized power flow and HESS scheduling with the Temporal Kolmogorov–
Arnold Network (TKAN) for predictive load and renewable generation forecasting. This unified optimization–
forecasting approach enables proactive scheduling, enhanced PQ, and improved system reliability in hybrid 
MGs.
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•	  Proposed a novel ALA-TKAN energy management method combining Artificial Lemming Algorithm (ALA) 
and Temporal Kolmogorov-Arnold Network (TKAN) for hybrid microgrids.

•	 Enhanced coordination of RES and HESS through ALA-based optimization of power flow distribution and 
energy storage control.

•	 Implemented predictive capability using TKAN to forecast power demand and renewable generation patterns 
for proactive energy management.

•	 Validated the proposed method against existing techniques (PDO-MACNN, BWO, PSO, ANN, MRA-FLC), 
demonstrating superior performance in power quality, stability, and reliability.

Novelty
The novelty of this work lies in the development of the ALA-TKAN technique for effective EM in hybrid MG 
systems integrated with RESs and HESS. The suggested approach integrates the optimization potential of the 
ALA with the temporal prediction power of the TKAN to develop a synchronized framework of scheduling 
and forecasting. The use of ALA aims at maximizing the flow of power and the recharging-discharging process 
of HESS components to achieve minimize power loss, energy cost, and THD and improve the coordination of 
the system and the voltage stability and frequency stability. At the same time, TKAN allows power demand and 
renewable generation forecasting, integrating the temporal dependence and non-linearity in system behaviors to 
enable more timely and knowledgeable control interventions. The integrated ALA-TKAN framework improves 
energy conversion efficiency, strengthens renewable integration, and ensures reliable EM under dynamic 
operating conditions, thereby contributing to the stable and sustainable operation of hybrid MGs.

Organization
The remaining of the paper is structured as follows: configuration of hybrid microgrid system integrated with 
RESs and HESS is explained in part 2. Part 3 describes the power quality enhancement in MG integrated with 
RESs and HESS based on ALA-TKAN technique. Part 4 explains results and discussion. Part 5 describes the 
conclusion.

Configuration of hybrid microgrid system integrated with RESs and HESS
Figure 1 illustrates the structure of a hybrid MG system integrated with RESs and a HESS. The system comprises 
Wind Turbines (WT) and PV panels connected to a DC bus through appropriate AC to DC and DC to DC 
converters, respectively. The FC and battery-based HESS are also interfaced to the DC bus via DC to DC 
converters, providing energy buffering and storage support. A Diesel Generator (DG) is connected through an 
AC to DC converter to supply additional power when needed. The Interlinking Converter (IC) manages power 
exchange between the DC and AC buses, regulated by the suggested ALA-TKAN-based energy management 
strategy. The AC bus delivers power to the grid and local loads, ensuring coordinated operation, efficient energy 
flow, and system stability under varying generation and demand conditions. The interlinking converter (IC) 
serves as the bidirectional interface between the DC and AC buses, regulating power exchange and maintaining 
DC-link voltage stability. The IC is governed by a PI-based current control strategy, where the active and reactive 
power references are generated according to system demand. To enhance adaptability, the reference signals of 
the IC are dynamically adjusted by the ALA-TKAN framework: ALA optimizes power-sharing among RES, 
HESS, and DG, while TKAN forecasts load and renewable generation trends to update the reference values 

Ref Method Scope Reported performance Limitations

25 PDO-MACNN Grid-independent HRES with PV–HESS; DC-link 
regulation, THD minimization

THD reduced to 2.8%, DC-link voltage deviation < 
± 3%

No forecasting; ignores energy 
pricing

26 BWO–ECMS PV–PEMFC–Battery–SC DC MG; hydrogen efficiency Efficiency 97.1%, hydrogen use reduced by 12% Limited handling of dynamic load 
variation, storage degradation

27 PSO–PI PV–Battery–SC–FC HESS; hydrogen minimization Efficiency 96.5%, hydrogen savings ~ 10%, power 
loss ~ 4.8 MW

Slower adaptation under PV 
fluctuation; no future load modeling

28 ANN PV-fed DC MG with Battery + SC; SoC balancing Efficiency 95.9%, SoC maintained within 20–80%, 
THD ~ 3.5%

Lacks adaptive control for rapid 
changes

29 ANN + PI DC MG with FC + HESS (Battery + SC); dynamic 
response Bus voltage stability within ± 5%, efficiency 96.8% No demand forecasting; limited 

fault handling
30 MRA–FLC RES-based DC MG with EV charging Efficiency 97.6%, THD ~ 2.9%, cost reduction ~ 8% No long-term sustainability metrics

31
NARMA-L2 
ANN + NARX 
MPPT

PV–Wind–HESS with Battery + SC; adaptive allocation DC bus stable at ± 2%, THD ~ 3.1% Limited adaptability to multi-
timescale variations

32 WHO, AEO, PSO PV–HESS with Battery + SC; voltage regulation Efficiency ~ 97.2%, THD ~ 2.6% Higher computational burden; 
scalability untested

Table 1.  Comparative analysis of EM techniques for PQ improvement in MGs integrated with RES and HESS.
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proactively. This integrated strategy enables the IC to ensure seamless AC/DC coordination, stable operation, 
and effective support during grid-connected as well as islanded conditions.

PV modelling
Solar PV energy has emerged as one of the most common RESs during current times. The PV cell functions as 
an electric current generator which functions like a switched current source using a diode’s operation33. A p–n 
junction forms the diode. Two series and parallel intrinsic resistors ris and rip, have been incorporated into the 
model in order to study the physical processes at the cell level.

Consequently, Eqs. (1–3) can be used to model the solar cell in terms of the photocurrent iP H , the current 
iD  through the diode, and the leakage current iSH . Additionally, a cell’s electrical properties are a little different 
from a diode’s. Consequently, the Shockley Eqn is used to represent iD , as illustrated below:

	
iD = iSC

[
EXP

(
vP hotovoltaic + rsiP hotovoltaic

nvT h

)
− 1

]
� (1)

where, n denotes ideality factor of diode which is between 1 and 2, rs denotes intrinsic series resistance of cell, 
iSC  denotes diode’s saturation current.

The following is the leakage current iSH  that the parallel resistance rp causes:

	
iSH = vP hotovoltaic + rsiP hotovoltaic

rp
� (2)

where, rp denotes cell intrinsic parallel resistance.
The cell’s net current iP hotovoltaic can be expressed as follows:

	 iP hotovoltaic = iP H − iD − iSH � (3)

where, iP H  denotes photocurrent in shunt.
Therefore, the above governing Eqn can be expressed as follows by substituting iD  for iP H  and using their 

expressions:

Fig. 1.  Structure of hybrid MG system integrated with RESs and HESS.
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iP hotovoltaic = iP H − iSC

[
EXP

(
vP hotovoltaic + rsiP hotovoltaic

nvT h

)
− 1

]
− vip + rsiP hotovoltaic

rp
� (4)

With

	
vT h = KT

Q
� (5)

where, Q indicates electron charge, K  indicates Boltzmann constant, T  indicates temperature of the junction 
during its operation.

A collection of basic PV cells coupled in parallel or series makes up a PV generator. Consequently, the current 
supplied by the PV panel as a function of the number of cells in series Ns and parallel Np is described by the 
following Eq. (6):

	

iP hotovoltaic = NpiP hotovoltaic − NpiSC

[
EXP

(
vP hotovoltaic + rsiP hotovoltaic

nKT Ns

)
− 1

]

−NpQ

(
vP hotovoltaic + rsiP hotovoltaic

Nsrp

) � (6)

WT modelling
The wind’s kinetic energy is converted by the WT into rotational energy in the form of a torque34. Equation (7) 
provides the power available in the wind.

	
p V = 1

2ρav3� (7)

where, a = πr2 indicates area swept by turbine blades, ρ denotes air density, v indicates wind speed.
Equation (8) provides the power that the turbine draws from the wind’s available power.

	
p T = 1

2ρπr2v3cP (λ, β)� (8)

where, r denotes radius of turbine rotor, cP (λ, β) denotes power coefficient, cP  denotes function of tip speed 
ratio (λ) and the pitch angle (β).

The λ is expressed in Eq. (9)

	
λ = rωT

vV
� (9)

where, ωT  denotes angular rotational speed of WT rotor.

Modelling of DG
A mechanical actuator system and a proportional speed control are the two components of the DG model35. The 
diesel engine’s dynamic model can be written as follows:

	

{
Q̇1 = Q2

Q̇2 = 1/t2t3Q1 − t2 + t3/t2t3Q2 + pref + M (ωref − ω)
� (10)

	 pM = 1/t2t3Q1 + t1/t2t3Q2� (11)

where, Q1 and Q2 are the state variables in the controllable canonical form of the DG, pM  denotes mechanical 
power, ω denotes rotor speed, ωref  denotes speed reference, t1, t2, t3 denotes DG time constants, M  denotes 
speed droop gain, pref  denotes power reference.

Modelling of PEMFC
By converting chemical energy into electrical power, the FC generates electricity using the same mechanism 
as batteries36. Simply by oxidizing hydrogen without the need for a mechanical handle. The chemical reaction 
outlined in Eq. (12) produces the PEM FC’s output voltage.

	 O2 + 2H2O+ → heat + energy� (12)

By assuming all losses that resulted in voltage dips in a PEMFC, the Eq. (13) below can be utilized to express the 
PEMFC voltage stack in current terms.

	 NvF uel cell + N (eNERST + vACT + vOHMIC + vCON )� (13)

where, N  denotes cell number, eNERST  refers reversible voltage, vACT  refers activation losses, vOHMIC  refers 
ohmic losses, vCON  refers losses of concentration.
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eNERST = 1.229 −

[(
RT

sF

)
In

(
pH2O

pH2 ∗ √
pO2

)]
� (14)

where, R indicates universal gas constant, T  refers temperature of cell, s denotes count of transferred electrons 
and F  refers Faraday constant, pH2  and pO2  are the H2 and O2 pressures respectively.

	 vACT = ξ1 + ξ2T + ξ3T IncO2 + ξ4T IniF uel cell� (15)

where, ξ1 = Constant term for concentration loss.
ξ2 = Current density coefficient.
ξ3 = Oxygen concentration coefficient.
ξ4 = temperature coefficient, i refers current of FC, cO2  refers concentration of O2.

	 vOHMIC = −iF uel cellrm� (16)

where, rm refers membrane resistance.

	
rm = ρmLm

a
� (17)

where, cell active area a, membrane thickness Lm, and membrane sensitivity ρM .

	
vCON = b

(
1 − iF uel cell

iLMax A

)
� (18)

where, iMax denotes the maximum current density, A refers to a constant.

Modelling of battery ESS
The BESS’s charging and discharging process is shown in Eq. (19)37.

	
electricityBESS(T ) = electricityBESS (t − 1) × (1 − σ) +

[
pCh arg e (T ) × ηCh arg e × µ1 (T ) − pDisch arg e (T ) /ηDisch arg e

×µ2 (T )

]
× ∆T � (19)

where, σ indicates self-discharge rate, electricityBESS(T ) denotes electricity in BESS at time T , pCh arg e (T ) 
denotes charging power at time T , ηCh arg e indicates efficiency of charging, pDisch arg e denotes discharging 
power at time T , ηDisch arg e denotes efficiency of discharging, ∆T  indicates time interval. The following 
limitations must also be followed by BESS.

	 µ1(T ) + µ2 (T ) = [0, 1]� (20)

	 µ1(T ) = [0, 1]� (21)

	 µ2(T ) = [0, 1]� (22)

These restrictions prevent BESS from always being charged as well as discharged simultaneously. In Eq. (20), the 
BESS’s charging and discharging states are denoted by the letters µ1(T ) and µ2 (T ). The BESS is charging or 
discharging if the number is 1, and the opposite is true if the number is 0.

Objective function
To determine the THD use the following Eq. (23):

	
T HD =

√∑∞
n=2 X2

n

X1
× 100%� (23)

where, RMS value of the n th harmonic component is shown by Xn, while the RMS value of the fundamental 
component (voltage or current) is indicated by X1.

Power quality enhancement in MG integrated with RESs and HESS based on ALA-
TKAN technique
Minimization of power loss, THD, and energy cost, along with the enhancement of energy conversion efficiency 
and the maintenance of voltage and frequency stability in hybrid MG systems integrating RESs and HESS, 
is suggested in this paper. The technique optimizes power flow and HESS control through the adjustment of 
energy management parameters, while accurately predicting renewable generation and power demand patterns 
to support proactive decision-making. The subsequent is a detailed description of the ALA-TKAN technique 
and its implementation for improved performance in RES-HESS-based hybrid MG systems.

Optimization using ALA technique
The ALA is a novel bio-inspired meta-heuristic that simulates four natural behaviors of lemming’s long-distance 
migration, digging holes, foraging, and evading predators to guide the search for optimal solutions38. These 
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behaviors are mathematically modeled to ensure a strong balance between exploration and exploitation during 
the search process. ALA integrates Brownian motion and Levy flight to enhance its ability to escape local optima 
and improve global search efficiency. It also features an energy-decreasing mechanism that adaptively shifts 
focus from broad exploration in the early stages to focused exploitation later. While several recent metaheuristic 
algorithms such as Harris Hawks Optimization (HHO), Slime Mould Algorithm (SMA), and Whale Optimization 
Algorithm (WOA) have been reported for energy optimization tasks, the Artificial Lemming Algorithm (ALA) 
was selected in this study owing to its superior balance between exploration and exploitation, adaptive energy-
decreasing mechanism, and reduced computational complexity. The four natural behaviors modeled in ALA 
(migration, digging, foraging, and predator evasion) enable both global and local search capabilities, while 
Brownian motion and Lévy flight enhance its ability to escape local minima. These features allow ALA to 
converge more rapidly and reliably than HHO, SMA, or WOA, particularly under multi-objective conditions 
involving simultaneous minimization of power loss, THD, and energy cost, alongside maximization of efficiency 
and stability. Additionally, ALA demonstrated shorter execution time and higher robustness in preliminary tests, 
making it more suitable for real-time energy management in hybrid microgrids.

Step 1: Initialization
To initialize the input parameters such as wind power, PV power, battery power, etc.

Step 2: Random generation
The input parameter in a matrix described by is generated at random.

	

−→
Y =




y1,1 y1,2 · · · y1,dim −1 y1,dim
y2,1 y2,2 · · · y2,dim −1 y2,dim
· · · · · · yj,k · · · · · ·
...

...
...

...
...

yn−1,1 yn−1,2 · · · yn−1,dim −1 yn−1,dim
yn,1 yn,2 · · · yn,dim −1 yn,dim




� (24)

where, the set of all initial candidate solutions 
−→
Y  denotes matrix consisting of n is population size, dim is 

number of dimensions between the upper and lower bounds.

Step 3: Fitness function
Evaluate the fitness value of each candidate solution based on criteria such as minimized THD of the system.

	 F = Min (T HD)� (25)

where, F  denotes fitness function.

Step 4: Exploration phase
When the energy factor is E (T ) > 1, ALA enters the exploration phase. This state promotes wide search to 
identify promising operational strategies for power distribution and HESS scheduling. This phase is guided by 
two behaviors inspired by biology:

Long-distance migration  This simulates the behavior of lemmings migrating long distances to find new energy 
coordination possibilities across MG components, preventing premature convergence and enabling identifica-
tion of better configurations.

	 Y⃗j (T + 1) = Y⃗BEST (T ) + f × −−−→
BrM ×

(
r⃗ ×

(
Y⃗BEST (T ) − Y⃗j (T )

))
+ (1 − r⃗) ×

(
Y⃗j (T ) − Y⃗j (T ) − Y⃗b (T )

)
� (26)

where, Y⃗j (T + 1) denotes location of the j th search agent at (T + 1) iteration, Y⃗BEST (T ) denotes current 
optimal solution, f  denotes served as flag to change the search direction, 

−−−→
BrM  denotes vector of random 

numbers characterizing Brownian motion, r⃗ denotes vector size, Y⃗j (T ) denotes current location of the j th 
search agent, Y⃗b (T ) denotes randomly selected search individual from the population, b denotes an integer 
index between 1 and n.

Digging holes  This reflects moderate-range exploration, where candidate solutions perform diversified search-
es around their current positions to discover sub-optimal HESS and power flow configurations.

	 Y⃗j (T + 1) = Y⃗j (T ) + f × l ×
(
Y⃗BEST (T ) − Y⃗b (T )

)
� (27)

	
l = Rand ×

(
1 + sin

(
T

2

))
� (28)

where,  denotes random number related to the current number of iterations.

Step 5: Exploitation phase
When the energy is E (T ) ≤ 1, ALA enters the exploitation phase. The agents have now depleted their energy 
and shifted their attention from conducting a wide search to focusing more intently on regions that show 
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promise. The algorithm narrows its search to refine control strategies that show potential for optimal power flow 
and HESS coordination.

Foraging for food  Lemming’s propensity to forage for food in a restricted region close to their shelter serves 
as the model for this behavior. Agents conduct spiral-based localized searches around the current best-known 
solution to fine-tune the scheduling of energy sources and storage usage in the MG.

	 Y⃗j (T + 1) = Y⃗BEST (T ) + f × spiral × Rand × Y⃗j (T )� (29)

where, spiral indicates spiral shape of the random search during foraging.

Evading predators  This behavior, which was inspired by lemming’s escape responses, enables agents to use 
Levy flight to make abrupt, large jumps in order to avoid possible local minima. This randomness aids in identi-
fying alternate power flow routes and storage utilization schemes.

	 Y⃗j (T + 1) = Y⃗BEST (T ) + f · g · Levy (dim) ×
(
Y⃗BEST (T ) − Y⃗j (T )

)
� (30)

where, f  denotes escape coefficient of lemming’s, Levy (·) denotes levy flight function, employed to mimic the 
deceptive maneuvers of lemmings during escape.

Step 6: Updating
Each search agent updates its position by selecting an exploration or exploitation behavior based on the energy 
factor, continuously improving power flow strategies and HESS control variables in alignment with operational 
goals.

	
E (T ) = 4 × arctan

[
1 − T

tMAX

]
× ln

( 1
Rand

)
� (31)

where, E (T ) denotes energy factor, tMAX  denotes maximum number of iterations.

Step 7: Termination
The method ends when the termination condition is satisfied, and the optimal solution discovered throughout 
the optimization process is given back as the output. If not, the algorithm iteratively refines the answers until 
one of the termination requirements is met, then goes back to step 3 and repeats the process. Flowchart of ALA 
is presented in Fig. 2.

Prediction using TKAN technique  The TKAN is utilized to predict power demand and renewable generation 
patterns to support proactive energy management decisions, enhance power quality, and coordinate the opera-
tion of HESSs in hybrid microgrids with integrated RESs38. TKAN is designed to analyze sequential energy-re-
lated variables such as voltage, current, power flow, and generation trends to ensure stable power delivery and 
optimized operation. Built upon Recurrent Kolmogorov-Arnold Networks (RKANs) and based on the Kolmog-
orov-Arnold representation theorem, TKAN decomposes complex multivariable relationships into composi-
tions of learnable univariate transformations. This decomposition supports the effective modeling of nonlinear 
patterns and uncertainties in electrical parameters. Each layer of TKAN incorporates memory-aware structures 
that retain previous operational conditions, enabling accurate forecasting of dynamic behaviors, including load 
fluctuations, renewable output variations, and disturbances affecting power quality.

Each TKAN layer retains historical sequence data through a memory-integrated recurrent structure, allowing 
it to track changes in power demand, PV power, and wind power, HESS power variability. The hidden state 
update at each time step is computed as:

	 HT = F (wHHHT −1 + wHY YT + BH)� (32)

where, HT  denotes hidden state at time T , YT  denotes input vector, HT −1 denotes previous hidden state, wHH  
and wHY  denotes learned weights, BH  denotes bias term, F (·) denotes nonlinear activation function.

The RKAN input at each layer and timestep is contextually constructed using past memory, enabling the 
network to learn sequence-aware embeddings as shown in Eq. (33):

	 SL,T = wL,Ỹ YT + wL,H̃H̃L,T −1� (33)

where, SL,T  denotes the input to RKAN layer L, wL,Ỹ  and wL,H̃  denotes learned weights, H̃L,T −1 denotes 
memory from the previous time step.

The memory state is updated by combining past memory and new KAN output in Eq. (34):

	 H̃L,T = wHHH̃L,T −1 + wHZÕT � (34)

where, H̃L,T  denotes updated memory state, ÕT  denotes current RKAN output, wHZ  denotes learnable weight 
matrix for the current output.
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To further strengthen long-range temporal learning, a modified LSTM mechanism governs the internal 
memory transitions using forget and input gates, which are crucial for modeling load cycles and renewable 
intermittency:

	
CT = FT ΘCT −1 + jT Θ

↼

C
T

� (35)

where, CT  denotes current memory state, FT  and jT  denotes forget and input gate activations, denotes candidate 
memory, Θ denotes element-wise multiplication.

The final prediction is made using the hidden state output, updated as:

	 HT = OT Θ tanh (CT )� (36)

Fig. 2.  Flowchart of ALA.
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where, HT  denotes hidden state used for prediction at time T , OT  denotes output gate, CT  denotes cell state, 
tanh (·) denotes nonlinearity for output modulation.

This forecasting framework enables TKAN to learn detailed sequence-aware representations and deliver 
accurate predictions of future power demand and renewable generation, thereby supporting improved energy 
scheduling, power quality, and HESS coordination control in hybrid MGs with high renewable integration.

For training and validation, the TKAN model was provided with 1,200 sequential samples representing PV 
generation, wind generation, and load demand patterns derived from the simulation environment. The dataset 
was sampled at a rate of 0.1 s to capture short-term fluctuations in renewable output and demand dynamics. 
Forecasting performance was evaluated using standard statistical error metrics: Root Mean Square Error (RMSE) 
and Mean Absolute Percentage Error (MAPE). The TKAN achieved an RMSE of 0.42 kW and a MAPE of 2.8%, 
confirming its ability to accurately forecast renewable generation and demand variations. These results validate 
the predictive reliability of TKAN and its role in supporting proactive energy management decisions within the 
ALA-TKAN framework.

Results and discussion
The performance of the suggested ALA-TKAN method for enhancing EM in hybrid MG systems integrated 
with RESs and HESS is demonstrated in this section through simulation results. This method aims to minimize 
power loss, THD, and energy cost, while improving energy conversion efficiency and maintaining voltage and 
frequency stability by optimizing power flow and HESS control, and accurately predicting renewable generation 
and power demand. The approach has been implemented on MATLAB, and its effectiveness in coordinating 
energy distribution and ensuring stable system operation under varying conditions has been thoroughly 
evaluated and compared with existing techniques. All simulations were executed in MATLAB/Simulink R2023a 
on a workstation with Intel® Core™ i7-10750H CPU @ 2.60 GHz, 16 GB RAM, and Windows 10 (64-bit). The 
reported execution times in Table 2 correspond to this environment, ensuring a consistent and fair basis for 
comparison across all tested methods. Table 2 provides a detailed simulation parameters used in the proposed 
system.

Figure 3 shows the wind power output. At the start, the power increases rapidly from 0 kW to a peak of 
about 15 kW at 0.2 s, reflecting a sudden change in wind speed or generator dynamics. After this transient peak, 
the output settles to a steady level of 10 kW from around 0.4 s onward and remains constant for the rest of the 
simulation. This stable performance indicates either consistent wind conditions or effective regulation by the 
control system following the initial transient.

Figure 4 presents the power output of the photovoltaic (PV) system. Initially, the output starts at 0 kW and 
rises sharply, reaching approximately 6  kW at around 0.2  s. This rapid increase corresponds to the system’s 
immediate response to the applied irradiance. After the initial ramp-up, the PV output stabilizes and maintains 

Component Parameter Value/assumption Reference/remark

PV system

Rated capacity 6 kW Based on simulation setup

Irradiance level (G) 1000 W/m2 Standard test condition

Cell temperature 25 °C STC

Series resistance (Rs) 0.01 Ω From24

Parallel resistance (Rp) 100 Ω From24

Wind turbine

Rated capacity 10 kW Simulation setup

Air density (ρ) 1.225 kg/m3 At sea level

Rotor radius (R) 2.5 m Selected for simulation

Cut-in/Rated/Cut-out speed 3 m/s/12 m/s/25 m/s Typical small-scale WT

Power coefficient (Cp,max) 0.42 From25

PEM fuel cell

Rated power 28 kW Simulation setup

H₂ input pressure 1.5 atm Assumption

O₂ input pressure 1 atm Assumption

Operating temperature 353 K (80 °C) Typical PEMFC

Number of cells (N) 50 Simulation

Diesel generator (DG)

Rated capacity 15 kW Backup generator

Speed droop gain 5% From26

Time constant 0.2 s From26

Battery ESS

Capacity 20 kWh Assumption

Rated power 10 kW Simulation

Efficiency (ηc/ηd) 0.95/0.95 28

SOC range 20–90% Protection constraint

General simulation assumptions
Sampling time 0.001 s MATLAB setup

Simulation duration 6 s For transient and steady state

Table 2.  Simulation parameters and assumptions for RES and HESS models.
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a nearly constant value of 6 kW for the remainder of the simulation period. The negligible fluctuations observed 
during the steady-state phase indicate uniform solar irradiance and demonstrate the effectiveness of the PV 
system’s control mechanism in sustaining a consistent power output despite minor dynamic variations.

Figure 5 illustrates the DC-link voltage profile. From the start of the simulation until approximately 5 s, the 
voltage remains stable at around 700 V, reflecting steady operation of the DC-link under nominal conditions. 
At 5 s, a step change occurs, causing the voltage to rise to about 720 V. This transition indicates a change in the 
system’s operating conditions, likely due to variations in power input or load demand. Following this adjustment, 
the DC-link voltage quickly stabilizes at the new level of 720 V, demonstrating the effectiveness of the regulation 
and control mechanisms in maintaining stability under altered operating modes.

Figure 6 illustrates the battery power output. Initially, the battery discharges sharply, peaking at approximately 
10 kW before rapidly dropping to near 0 kW around 0.2 s. Between the 0.2 s and 4 s the battery is in charging 
mode, with power switched slightly around the 4 kW. At 4 s, the mode shifts as the power drops to approximately 
−5 kW, indicating a transition to discharging. This discharging goes up to 5 s after which the battery goes back 
to a neutral or standby situation where power is at 0 kW. These transitions represent dynamic duty cycle capacity 
of the battery to respond to fluctuations in energy demand and generation conditions, which allow maintaining 
energy parity in the system.

Figure 7 illustrates the load demand profile over the simulation period. At the beginning, the load power 
quickly rises to approximately 25 kW and remains constant until about 1 s. Between 1 and 2.5 s, the demand 
decreases to 20 kW, representing a temporary reduction in load. At 2.5 s, the load recovers to 25 kW and sustains 
this level until 4 s. Beyond 4 s, the power demand decreases sharply to around 15 kW and stabilizes at this level 
for the remainder of the simulation. These discrete step changes in the load profile emulate realistic variations 
in consumption patterns, creating a dynamic operating environment that effectively tests the adaptability and 
responsiveness of the energy management (EM) system.

Figure 8 shows the IC power output. The power begins at 0 kW and rises quickly to approximately 3 kW, where 
it remains with minor fluctuations until around 1 s. Between 1 and 2.5 s, the power drops and fluctuates around 
0 kW. At 2.5 s, there is a sharp spike reaching about 6 kW, followed by a return to a fluctuating level around 4 kW. 

Fig. 4.  Evaluation of PV Power.

 

Fig. 3.  Evaluation of wind power.
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This continues until 4 s, after which the power drops and stabilizes near 2 kW. At 5 s, the interlinking converter 
switches to a negative power flow of approximately −2 kW, indicating reverse power transfer, and remains at that 
level with slight variations. These dynamic changes demonstrate the interlinking converter’s role in balancing 
power between subsystems during variations in generation and load conditions.

Fig. 7.  Evaluation of load power.

 

Fig. 6.  Evaluation of battery power.

 

Fig. 5.  Evaluation of DC-link voltage.
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Figure 9 depicts the load current waveform. Initially, the current has a peak amplitude of approximately ± 120 
A and exhibits a stable sinusoidal pattern up to 1 s, representing operation under a higher load condition. At 
exactly 1 s, a sudden transition occurs, and the current amplitude decreases to about ± 50 A, indicating a reduction 
in load demand. Despite this change in magnitude, the waveform preserves its sinusoidal shape, frequency, and 
symmetry, demonstrating consistent and stable current behavior under both high- and low-load conditions.

Figure 10 shows the grid current. From 0.75 to 1 s, the current exhibits a balanced three-phase sinusoidal 
waveform with peak amplitudes of approximately ± 100 A, indicating active power exchange with the grid. At 
precisely 1  s, three-phase currents abruptly drop to zero, signifying complete disconnections from the grid. 
The waveform remains flat at 0 A beyond this point, confirming no current contribution from the grid after 
disconnection. Figure  11 illustrates the voltage of load. The voltage maintains consistent peak amplitude of 
approximately ± 325 V. Despite the disconnection from the grid at 1 s, there is no observable disturbance or drop 
in voltage, indicating seamless voltage support from local generation or storage units. The waveform remains 
stable and undistorted, ensuring reliable voltage supply to the load.

Figure 12 illustrates the three-phase grid voltage. Initially, the voltage exhibits a stable sinusoidal waveform 
with peak values oscillating around ± 325 V, reflecting normal grid operation. This condition persists until 1 s, at 
which point the voltage abruptly collapses to zero and remains flat throughout the interval from 1 to 1.25 s. Such 
a sudden drop indicates a grid disconnection or fault event, effectively captured by the system. This transition is 
crucial for evaluating the system’s ability to detect and respond to grid disturbances, thereby ensuring stability 
and protection.

Figure 13 presents the grid power profile. From 0 to 1 second, the grid supplies a steady output of 
approximately 40 kW. At exactly 1 second, the power abruptly falls to nearly 0 kW and remains at this level until 
2.5 seconds, signifying a temporary grid outage or a shift in the energy supply source. After 2.5 seconds, the grid 
power recovers to about 40 kW and stays stable up to 5 seconds. Beyond this point, the output decreases and 
stabilizes at around 30 kW between 5 and 6 seconds. These fluctuations reflect the system’s adaptive capability in 
regulating energy exchange with the grid under varying operating conditions.

Fig. 9.  Evaluation of load current.

 

Fig. 8.  Evaluation of IC power.
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Fig. 12.  Evaluation of grid voltage.

 

Fig. 11.  Evaluation of load voltage.

 

Fig. 10.  Evaluation of grid current.
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Figure 14 shows the fuel cell (FC) power output. From the start of the simulation until approximately 2.2 s, 
the FC delivers a stable power of around 28 kW, reflecting steady operation under normal conditions. Between 
2.2 and 2.6 s, a sharp dip occurs, with the power momentarily dropping to nearly 14 kW. This transient reduction 
suggests a temporary disturbance or adjustment in load-sharing dynamics. Following this event, the FC output 
quickly recovers and stabilizes back at 28 kW for the remainder of the simulation, demonstrating the system’s 
robustness in managing transient conditions while maintaining steady-state performance. Figure 15 illustrates 
the diesel generator (DG) power output. From 0 to 1 s, the DG remains inactive at 0 kW. At 1 s, it starts operating, 
initially supplying approximately 10 kW. The output then gradually rises, peaking at around 14.5 kW just before 
the 3-s mark. At exactly 3 s, the DG is switched off, and its output drops back to 0 kW, where it remains for the 
rest of the simulation. This controlled activation and deactivation highlight the system’s capability for dynamic 
dispatch of the generator, ensuring that power supply aligns with load demand or varying grid conditions.

Table 3 presents a detailed comparison between the proposed method and several existing approaches. The 
suggested method achieves the lowest power loss at 2.9 MW, compared to 3.4 MW for PDO-MACNN, 4.3 MW 
for BWO, 5.1 MW for PSO, 5.6 MW for ANN, and 4.0 MW for MRA-FLC. It also attains the highest efficiency of 
99.2%, while other methods achieve 98.2% for PDO-MACNN, 97.3% for BWO, 96.4% for PSO, 95.7% for ANN, 
and 97.8% for MRA-FLC. The energy cost is minimized at 0.8 $/Wh, in contrast to 1.1, 1.4, 1.5, 1.9, and 1.2 for 
PDO-MACNN, BWO, PSO, ANN, and MRA-FLC respectively. The suggested approach also demonstrates the 
shortest execution time of 19 s, outperforming others such as PDO-MACNN with 25 s, BWO with 31 s, PSO 
with 29 s, ANN with 35 s, and MRA-FLC with 22 s. In terms of total harmonic distortion, it records the lowest 
value at 1.4%, compared to 2.1% for PDO-MACNN, 3.4% for BWO, 2.9% for PSO, 3.8% for ANN, and 2.7% for 
MRA-FLC highlighting the effectiveness of the suggested EM strategy in maintaining superior PQ within hybrid 
MGs.

In addition to lowering the unit energy cost to 0.8 $/Wh, the proposed strategy also contributes to long-term 
economic benefits. The reduction of power loss and THD decreases fuel consumption in diesel generators, while 

Fig. 14.  Evaluation of fuel cell power.

 

Fig. 13.  Evaluation of grid power.
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optimized HESS scheduling reduces charging/discharging stress, thereby extending battery and fuel cell lifetime. 
For a medium-scale hybrid microgrid (~ 100 kW), these improvements are expected to yield overall lifecycle cost 
savings of 12–15% compared to conventional EMS approaches. Moreover, the enhanced operational efficiency 
can shorten the payback period by approximately 2–3 years, making the proposed method more attractive for 
real-world deployment.

Discussion
The simulation results and comparative analysis clearly demonstrate the effectiveness of the suggested EM 
strategy for PQ improvement in hybrid MGs integrated with RESs and HESSs. The system exhibits stable and 
responsive behavior under varying conditions, as reflected in the dynamic profiles of various components. 
The power outputs of wind and PV stabilize at 10 kW and 6 kW respectively, ensuring a consistent renewable 
contribution. The DC-link voltage remains steady around 700 V with a step increase to 720 V, indicating reliable 
voltage regulation. The battery operates dynamically, charging around 4 kW and discharging at approximately 
−5 kW, adapting to fluctuations in demand. The load shows step changes from 25 to 20 kW and down to 15 kW, 
which the system successfully accommodates. The interlinking converter shifts from 3 to 6  kW and later to 
−2 kW, demonstrating its role in bidirectional power flow. Currents of both load and grid respond clearly to 
demand and disconnection events, maintaining waveform integrity. Voltage of the load remains stable at ± 325 V 
even after grid disconnection, confirming effective local voltage support, while the grid voltage and power drop 
to zero at 1 s and later recovers, showcasing seamless transition handling. The FC output holds steady at 28 kW, 
with only a brief dip, while the DG operates selectively, peaking at 14.5 kW, aligning generation with system 
needs. The comparative results reinforce these findings, with the suggested strategy achieving the lowest power 
loss of 2.9 MW, highest efficiency of 99.2%, minimum energy cost of 0.8 d$/Wh, shortest execution time of 
19 s, and lowest THD of 1.4%. Together, these results confirm the robustness and superiority of the suggested 
approach in optimizing energy flow, enhancing PQ, and ensuring efficient, stable operation of hybrid MGS. To 
validate THD minimization, FFT-based harmonic analysis of load current and voltage was conducted. Prior 
to applying the ALA-TKAN approach, the harmonic spectrum exhibited significant low-order components, 
particularly the 5th and 7th harmonics, with an overall THD of approximately 3.8%. After applying ALA-TKAN, 
these harmonics were effectively suppressed, leading to a THD reduction to 1.4%. This confirms the method’s 
capability to minimize harmonic distortion and improve PQ, aligning with IEEE-519 recommendations.

The superiority of the proposed ALA–TKAN framework over existing hybrid EM methods such as PDO–
MACNN and ANN–PI controllers can be attributed to its integrated design. PDO–MACNN mainly addresses 
THD reduction and DC-link stability but lacks load forecasting and energy pricing considerations, while ANN–
PI controllers stabilize voltage and manage SoC yet operate reactively without predictive scheduling. In contrast, 

Methods Power loss (MW) Efficiency (%) Cost ($/Wh) Execution time (sec) THD (%)

ALA-TKAN 2.9 99.2 0.8 19 1.4

PDO-MACNN 3.4 98.2 1.1 25 2.1

BWO 4.3 97.3 1.4 31 3.4

PSO 5.1 96.4 1.5 29 2.9

ANN 5.6 95.7 1.9 35 3.8

MRA-FLC 4.0 97.8 1.2 22 2.7

Table 3.  Performance comparison of suggested and existing approaches.

 

Fig. 15.  Evaluation of diesel generator power.
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ALA–TKAN establishes a unified framework where the Artificial Lemming Algorithm (ALA) optimizes power 
flow distribution and HESS operation, and the Temporal Kolmogorov–Arnold Network (TKAN) provides 
sequence-aware forecasting of load and renewable generation. This combination ensures proactive scheduling, 
faster convergence through adaptive exploration–exploitation strategies, and accurate temporal prediction of 
nonlinear system behaviors. As a result, ALA–TKAN consistently minimizes power loss (2.9 MW), THD (1.4%), 
and energy cost (0.8 $/Wh), while achieving the highest efficiency (99.2%) and shortest execution time (19 s), 
thereby establishing a comprehensive improvement in PQ, stability, and system economics.

Deeper technical insights and scalability considerations
Beyond numerical improvements, the integration of ALA and TKAN provides several technical advantages. 
First, the forecasting capability of TKAN reduces the need for frequent re-optimization, since predicted demand 
and renewable profiles allow the optimizer to anticipate changes rather than reacting after disturbances occur. 
This synergy minimizes computational overhead while maintaining high accuracy in dynamic conditions. 
Second, the fast convergence of ALA (stabilizing within the first few iterations across multiple runs) directly 
translates to shorter execution times, which supports feasibility for near real-time energy management.

In terms of scalability, the proposed ALA–TKAN approach is inherently modular. Additional generation 
units, storage devices, or load clusters can be incorporated by expanding the decision variables handled by 
ALA and the input features fed into TKAN. Preliminary complexity analysis shows the framework scales 
approximately linearly with the number of decision variables (O(N × D × T + L × H2 × S)), making it suitable 
for larger microgrids with dozens of distributed assets. Moreover, since TKAN can process parallel time-series 
inputs (e.g., PV, wind, load clusters), the forecasting component remains tractable for larger systems.

For real-time energy management system (EMS) deployment, the combined execution time of 19 s in the 
tested setup demonstrates practical feasibility, particularly for scheduling horizons in the order of minutes. 
Future work will focus on further reducing latency via lightweight TKAN architectures, implementing ALA 
in parallel computing environments, and validating the framework in hardware-in-the-loop simulations to 
confirm responsiveness under real operational constraints.

Computational complexity considerations
The computational complexity of the proposed ALA–TKAN framework can be expressed as 
O(N × D × T + L × H2 × S), where N is the number of search agents, D the decision variables, T the number of 
iterations, L the number of TKAN layers, H the hidden dimension, and S the forecast sequence length. The 
ALA component exhibits a similar order of complexity as conventional metaheuristics such as PSO or WOA 
but converges in fewer iterations due to its adaptive exploration–exploitation strategy. The TKAN component 
introduces only a modest additional cost relative to traditional ANN forecasting, while significantly improving 
prediction accuracy. Overall, simulation results confirmed that ALA–TKAN achieved the lowest execution 
time (19 s) compared to benchmark methods, thereby validating that the framework not only offers superior 
optimization accuracy but also maintains computational efficiency suitable for practical hybrid microgrid 
applications.

Conclusion
This manuscript presents an advanced EM strategy for enhancing PQ and operational efficiency in hybrid MGs 
integrating RESs and HESSs. The suggested method exhibits superior performance by effectively stabilizing 
voltage and frequency, minimizing power losses to 2.9 MW, achieving the highest energy efficiency of 99.2%, 
reducing energy cost to 0.8 $/Wh, and maintaining the lowest THD at 1.4%. Compared to existing methods 
such as PDO–MACNN, BWO, PSO, ANN, and MRA–FLC, which exhibit higher power losses up to 5.6 MW, 
lower efficiencies down to 95.7%, higher energy costs up to 1.9 $/Wh, and THD values reaching 3.8%, the 
suggested method consistently outperforms in all critical metrics. Simulation results further demonstrate its 
robust response to dynamic conditions, with stable power profiles across wind, PV, battery, converter, load, 
and generator systems. These outcomes validate the method’s effectiveness in optimizing energy coordination, 
maintaining system reliability, and improving overall PQ, making it a strong solution for reliable and efficient 
hybrid MG operation.

Future works
Future research can extend the proposed strategy to large-scale microgrids with more complex load variations 
and higher renewable penetration. Emphasis may be placed on integrating real-time data analytics and 
enhanced forecasting models to support more adaptive energy management. Additional efforts could focus on 
strengthening system resilience under uncertainties, fault events, and communication delays. While the present 
study validates the ALA–TKAN method under steady-state and step-change load variations, further stress tests 
such as fault ride-through, rapid renewable intermittency, and transitions between islanded and grid-connected 
modes remain important for practical deployment. The predictive capability of TKAN and the optimization 
adaptability of ALA provide a strong foundation for addressing these challenges. Furthermore, hardware-in-the-
loop (HIL) and real-time implementation studies will be pursued in future work to move toward experimental 
validation and practical feasibility of the proposed strategy.

Data availability
All data generated or analysed during this study are included in this published article.
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